Solveeit Logo

Question

Question: The first 3 terms in the expansion of \( {\left( {1 + ax} \right)^n}\left( {n \ne 0} \right) \) are ...

The first 3 terms in the expansion of (1+ax)n(n0){\left( {1 + ax} \right)^n}\left( {n \ne 0} \right) are 1, 6x6x and 16x216{x^2} . Then the values of a and n are respectively
A. 2 and 9
B. 3 and 2
C. 2/3 and 9
D. 3/2 and 6

Explanation

Solution

Hint : First expand (1+ax)n{\left( {1 + ax} \right)^n} following the binomial expansion which is mentioned below. And take out the first 3 terms of the expansion and compare them with the given values 1, 6x6x and 16x216{x^2} respectively. From this we get the values of a and n.
Formula used:
Binomial expansion of (x+y)n{\left( {x + y} \right)^n} is \mathop \sum \limits_{r = 0}^n {}_{}^nC_r^{}.{x^{n - r}}.{y^r} , where r must always be less than or equal to n.

Complete step-by-step answer :
We are given that the first 3 terms in the expansion of (1+ax)n(n0){\left( {1 + ax} \right)^n}\left( {n \ne 0} \right) are 1, 6x6x and 16x216{x^2} .
We have to find the value of ‘a’ and ‘n’.
First we are expanding (1+ax)n{\left( {1 + ax} \right)^n} .
Binomial expansion of (1+ax)n{\left( {1 + ax} \right)^n} is \mathop \sum \limits_{r = 0}^n {}_{}^nC_r^{}.{\left( 1 \right)^{n - r}}\left( {ax} \right)
nC0(1)n0(ax)0+nC1(1)n1(ax)1+nC2(1)n2(ax)2+....\Rightarrow {}_{}^nC_0^{}{\left( 1 \right)^{n - 0}}{\left( {ax} \right)^0} + {}_{}^nC_1^{}{\left( 1 \right)^{n - 1}}{\left( {ax} \right)^1} + {}_{}^nC_2^{}{\left( 1 \right)^{n - 2}}{\left( {ax} \right)^2} + ....
The value of nC0{}_{}^nC_0^{} is 1, value of nC1{}_{}^nC_1^{} is n and the value of nC2{}_{}^nC_2^{} is n(n1)2\dfrac{{n\left( {n - 1} \right)}}{2}
Substituting the above values, we get
1×(1)n+n×(1)n1(ax)+(n(n1)2)(1)n2(ax)2+....\Rightarrow 1 \times {\left( 1 \right)^n} + n \times {\left( 1 \right)^{n - 1}}\left( {ax} \right) + \left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right){\left( 1 \right)^{n - 2}}{\left( {ax} \right)^2} + ....
1 raised to the power of anything will result in 1 itself.
(1×1)+(n×1×ax)+(n(n1)2)×1×(ax)2+....\Rightarrow \left( {1 \times 1} \right) + \left( {n \times 1 \times ax} \right) + \left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right) \times 1 \times {\left( {ax} \right)^2} + ....
1+nax+(n(n1)2)(ax)2+....\Rightarrow 1 + nax + \left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right){\left( {ax} \right)^2} + ....
As we can see the first term is 1, the second term is naxnax and the third term is (n(n1)2)(ax)2\left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right){\left( {ax} \right)^2} of the expansion. But we are given that 1, 6x6x and 16x216{x^2} are the first three terms.
This means nax=6x,(n(n1)2)(ax)2=16x2nax = 6x,\left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right){\left( {ax} \right)^2} = 16{x^2}
nax=6xnax = 6x
na=6\Rightarrow na = 6
a=6neq(1)\Rightarrow a = \dfrac{6}{n} \Rightarrow eq\left( 1 \right)
(n(n1)2)(ax)2=16x2\left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right){\left( {ax} \right)^2} = 16{x^2}
Substituting the value of ‘a’ from equation 1
(n(n1)2)(6n×x)2=16x2\Rightarrow \left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right){\left( {\dfrac{6}{n} \times x} \right)^2} = 16{x^2}
(n(n1)2)36x2n2=16x2\Rightarrow \left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right)\dfrac{{36{x^2}}}{{{n^2}}} = 16{x^2}
Cancelling x2{x^2} on either side
(n(n1)2)36n2=16\Rightarrow \left( {\dfrac{{n\left( {n - 1} \right)}}{2}} \right)\dfrac{{36}}{{{n^2}}} = 16
n(n1)2=16×n236\Rightarrow \dfrac{{n\left( {n - 1} \right)}}{2} = 16 \times \dfrac{{{n^2}}}{{36}}
n2n2=4n29\Rightarrow \dfrac{{{n^2} - n}}{2} = \dfrac{{4{n^2}}}{9}
On cross multiplication, we get
9(n2n)=2×4n2\Rightarrow 9\left( {{n^2} - n} \right) = 2 \times 4{n^2}
9n29n=8n2\Rightarrow 9{n^2} - 9n = 8{n^2}
9n29n8n2=0\Rightarrow 9{n^2} - 9n - 8{n^2} = 0
n29n=0\Rightarrow {n^2} - 9n = 0
n(n9)=0\Rightarrow n\left( {n - 9} \right) = 0
N cannot be zero, so (n9)=0\left( {n - 9} \right) = 0
n=9\therefore n = 9
The value of n is 9 and the value of a is 6n=69=23\dfrac{6}{n} = \dfrac{6}{9} = \dfrac{2}{3}
Hence, the correct option is Option C, a is 23\dfrac{2}{3} and n is 9.
So, the correct answer is “Option C”.

Note : Instead of expanding (1+ax)n{\left( {1 + ax} \right)^n} , we can directly write the 1st, 2nd and 3rd terms using the general formula of the terms of a binomial expression which is Tr+1=nCr.(1)nr(ax)r{T_{r + 1}} = {}_{}^nC_r^{}.{\left( 1 \right)^{n - r}}{\left( {ax} \right)^r} , where r starts from 0 and always less than or equal to n. The value of nCr{}_{}^nC_r^{} is n!r!(nr)!\dfrac{{n!}}{{r!\left( {n - r} \right)!}}