Solveeit Logo

Question

Question: The figure shows an insulated cylinder divided into three parts \(A\), \(B\) and \(C\). Piston I and...

The figure shows an insulated cylinder divided into three parts AA, BB and CC. Piston I and II are connected by a rigid rod and can move without friction inside the cylinder. Piston I is perfectly conducting while piston II is perfectly insulating. The initial state of gas (γ=1.5)(\gamma=1.5) present in each compartment A, B and CC is as shown. Now, compartment A is slowly given heat through a heater H\mathrm{H} such that the final volume of C\mathrm{C} becomes 4V09.\dfrac{4 V_{0}}{9} . Assume the gas to be ideal and find the heat supplied by the heater.

(A) 18PoVo18 P_{o} V_{o}
(B) 12PoVo12 P_{o} V_{o}
(C) 9PoVo9 P_{o} V_{o}
(D) 25PoVo25 P_{o} V_{o}

Explanation

Solution

Hint First we need to apply the heat supply equation to determine the heat change in case of each compartment. Then equating the temperature and pressure, we will get the heat supplied by the heater.

Complete step by step answer:
We can know the heat supplied from the equation,
ΔQ=ΔU+ΔW\Rightarrow \Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}
ΔU=ΔUA+ΔUB+0\Rightarrow \Delta \mathrm{U}=\Delta \mathrm{U}_{\mathrm{A}}+\Delta \mathrm{U}_{\mathrm{B}}+0 \quad
We find that there is no heat change in case of compartment C
ΔW=ΔWA+0+ΔWC\Rightarrow \Delta \mathrm{W}=\Delta \mathrm{W}_{\mathrm{A}}+0+\Delta \mathrm{W}_{\mathrm{C}} \quad
We find that there is no change in volume in case of compartment B hence work done = 0
The initial conditions are assumed as
Po\Rightarrow \mathrm{P}_{\mathrm{o}} for Pressure
Vo\Rightarrow \mathrm{V}_{\mathrm{o}}for Volume
To\Rightarrow \mathrm{T}_{\mathrm{o}}for Temperature
The final conditions in respective compartments:
In Compartment C
PVγ=PVγ=P×(4V09)1.5=PoVo1.5\Rightarrow \mathrm{PV}^{\gamma}=\mathrm{PV}^{\gamma}=\mathrm{P} \times\left(\dfrac{4 \mathrm{V}_{0}}{9}\right)^{1.5}=\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}^{1.5}
P=27P08\Rightarrow P=\dfrac{27 P_{0}}{8}
PoVoTo=27Po8×4Vo9T\Rightarrow \dfrac{\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}}{\mathrm{T}_{\mathrm{o}}}=\dfrac{\dfrac{27 \mathrm{P}_{\mathrm{o}}}{8} \times \dfrac{4 \mathrm{V}_{\mathrm{o}}}{9}}{\mathrm{T}}
T=3To2\Rightarrow \mathrm{T}=\dfrac{3 \mathrm{T}_{\mathrm{o}}}{2}
In Compartment A
P=27Po8\Rightarrow \mathrm{P}=\dfrac{27 \mathrm{P}_{\mathrm{o}}}{8}
For pistons to come at rest both compartment A and C have to have the same pressure.
PoVoTo=27Po8×(Vo+5Vo9)T\Rightarrow \dfrac{\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}}{\mathrm{T}_{\mathrm{o}}}=\dfrac{\dfrac{27 \mathrm{P}_{\mathrm{o}}}{8} \times\left(\mathrm{V}_{\mathrm{o}}+\dfrac{5 \mathrm{V}_{\mathrm{o}}}{9}\right)}{\mathrm{T}}
T=21To4\Rightarrow \mathrm{T}=\dfrac{21 \mathrm{T}_{\mathrm{o}}}{4}
In Compartment B
T=21To4\Rightarrow \mathrm{T}=\dfrac{21 \mathrm{T}_{\mathrm{o}}}{4}
We know that the temperature of both compartment A and compartment B should be the same at equilibrium. Therefore,
PoVoTo=P×Vo21To4\Rightarrow \dfrac{\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}}{\mathrm{T}_{\mathrm{o}}}=\dfrac{\mathrm{P} \times \mathrm{V}_{\mathrm{o}}}{\dfrac{21 \mathrm{T}_{\mathrm{o}}}{4}}
P=21P04\Rightarrow P=\dfrac{21 P_{0}}{4}
γ=CpCv=f+2f\Rightarrow \gamma=\dfrac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\dfrac{\mathrm{f}+2}{\mathrm{f}}
f=4\Rightarrow \mathrm{f}=4
Cv=fR2=2R\Rightarrow \mathrm{C}_{\mathrm{v}}=\dfrac{\mathrm{fR}}{2}=2 \mathrm{R}
ΔUA=ΔUB\Rightarrow \Delta \mathrm{U}_{\mathrm{A}}=\Delta \mathrm{U}_{\mathrm{B}}
ΔUA=nCvΔT\Rightarrow \Delta \mathrm{U}_{\mathrm{A}}=\mathrm{n} \mathrm{C}_{\mathrm{v}} \Delta \mathrm{T}
ΔUA=P0VoRTo×Cv(21To4To)=PoVoRTo×2R×17To4=17PoVo2\Rightarrow \Delta \mathrm{U}_{\mathrm{A}}=\dfrac{\mathrm{P}_{0} \mathrm{V}_{\mathrm{o}}}{\mathrm{RT}_{\mathrm{o}}} \times \mathrm{C}_{\mathrm{v}}\left(\dfrac{21 \mathrm{T}_{\mathrm{o}}}{4}-\mathrm{T}_{\mathrm{o}}\right)=\dfrac{\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}}{\mathrm{RT}_{\mathrm{o}}} \times 2 \mathrm{R} \times \dfrac{17 \mathrm{T}_{\mathrm{o}}}{4}=\dfrac{17 \mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}}{2}
ΔWA=ΔWC\Rightarrow \Delta \mathrm{W}_{\mathrm{A}}=-\Delta \mathrm{W}_{\mathrm{C}}
as the gas in chamber A is working on chamber C
ΔQC=0\Rightarrow \Delta \mathrm{Q}_{\mathrm{C}}=0 as it is an adiabatic process
Therefore,
ΔQC=ΔUC+ΔWC\Rightarrow \Delta \mathrm{Q}_{\mathrm{C}}=\Delta \mathrm{U}_{\mathrm{C}}+\Delta \mathrm{W}_{\mathrm{C}}
ΔUC=ΔWC=nCvΔT=PoVoRTo×2R×(3To2To)=PoVo\Rightarrow \Delta \mathrm{U}_{\mathrm{C}}=-\Delta \mathrm{W}_{\mathrm{C}}=\mathrm{n} \mathrm{C}_{\mathrm{v}} \Delta \mathrm{T}=\dfrac{\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}}{\mathrm{RT}_{\mathrm{o}}} \times 2 \mathrm{R} \times\left(\dfrac{3 \mathrm{T}_{\mathrm{o}}}{2}-\mathrm{T}_{\mathrm{o}}\right)=\mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}
ΔU=ΔUA+ΔUB+0\Rightarrow \Delta \mathrm{U}=\Delta \mathrm{U}_{\mathrm{A}}+\Delta \mathrm{U}_{\mathrm{B}}+0 \quad
Therefore, no heat change occurs in case of compartment C
ΔW=ΔWA+0+ΔWC\Rightarrow \Delta \mathrm{W}=\Delta \mathrm{W}_{\mathrm{A}}+0+\Delta \mathrm{W}_{\mathrm{C}} \quad
Hence, no change in volume in case of compartment B and therefore work done =0
The heat supplied by the heater = The heat supplied to compartment A + The heat flow through piston
ΔQ=ΔUA+ΔUB+ΔWAB=ΔUA+ΔUB+ΔWA=2ΔUA+ΔWA\Rightarrow \Delta \mathrm{Q}=\Delta \mathrm{U}_{\mathrm{A}}+\Delta \mathrm{U}_{\mathrm{B}}+\Delta \mathrm{W}_{\mathrm{AB}}=\Delta \mathrm{U}_{\mathrm{A}}+\Delta \mathrm{U}_{\mathrm{B}}+\Delta \mathrm{W}_{\mathrm{A}}=2 \Delta \mathrm{U}_{\mathrm{A}}+\Delta \mathrm{W}_{\mathrm{A}}
ΔQ=18PoVo\Rightarrow \Delta \mathrm{Q}=18 \mathrm{P}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}

Therefore, the correct answer is Option A.

Note: We must have a thorough knowledge on thermodynamics and we must read the given figure carefully. At first glance, the image might seem to be like a circuit but we must read the question thoroughly before deducing.