Solveeit Logo

Question

Question: The figure shows an infinite plane having uniform charge density $\sigma$ and a small charged partic...

The figure shows an infinite plane having uniform charge density σ\sigma and a small charged particle having charge qq and mass mm suspended by a light insulating thread. Find σ\sigma if the charge is in equilibrium.

A

2ϵ0mgq\frac{2\epsilon_0 mg}{q}

B

ϵ0mg2q\frac{\epsilon_0 mg}{2q}

C

2qϵ0mg\frac{2q}{\epsilon_0 mg}

D

2qϵ0mg\frac{2q\epsilon_0}{mg}

Answer

2ϵ0mgq\frac{2\epsilon_0 mg}{q}

Explanation

Solution

For an infinite plane with charge density σ\sigma, the electric field is

E=σ2ϵ0.E = \frac{\sigma}{2\epsilon_0}.

The charged particle experiences an electric force

Fe=qE=qσ2ϵ0.F_e = qE = \frac{q\sigma}{2\epsilon_0}.

Since the thread makes a 4545^\circ angle with the vertical, its tension TT has components:

  • Vertical: Tcos45=mgT\cos45 = mg
  • Horizontal: Tsin45=qσ2ϵ0T\sin45 = \frac{q\sigma}{2\epsilon_0}

Dividing the horizontal equilibrium by the vertical equilibrium:

Tsin45Tcos45=qσ2ϵ0mgtan45=qσ2ϵ0mg.\frac{T\sin45}{T\cos45} = \frac{\frac{q\sigma}{2\epsilon_0}}{mg} \quad \Rightarrow \quad \tan45 = \frac{q\sigma}{2\epsilon_0 mg}.

Since tan45=1\tan45=1, we have:

qσ2ϵ0mg=1σ=2ϵ0mgq.\frac{q\sigma}{2\epsilon_0 mg} = 1 \quad \Rightarrow \quad \sigma = \frac{2\epsilon_0mg}{q}.