Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

The figure shows a system consisting of (i) a ring of outer radius 3R rolling clockwise without slipping on a horizontal surface with angular speed ?? and (ii) an inner disc of radius 2R rotating anti-clockwise with angular speed ?/2?/2. The ring and disc are separated by frictionless ball bearings. The system is in the x-z plane. The point P on the inner disc is at a distance R from the origin, where OP makes an angle of 30^{\circ} with the horizontal. Then with respect to the horizontal surface,

A

the point O has a linear velocity 3R?i^3R?\widehat {i}

B

the point P has a linear velocity 114R?i^+34R?k^\frac{11}{4}R?\widehat {i}+\frac{\sqrt3}{4}R?\widehat {k}

C

the point P has a linear velocity 134R?i^34R?k^\frac{13}{4}R?\widehat {i}-\frac{\sqrt3}{4}R?\widehat {k}

D

the point P has a linear velocity (334)R?i^+14R?k^\bigg(3-\frac{\sqrt3}{4}\bigg)R?\widehat {i}+\frac{1}{4}R?\widehat {k}

Answer

the point P has a linear velocity 114R?i^+34R?k^\frac{11}{4}R?\widehat {i}+\frac{\sqrt3}{4}R?\widehat {k}

Explanation

Solution

Velocity of point O is v0=(3r?)i^v_0=(3r?)\widehat {i} vPOv_{PO} is R.?2\frac{R.?}{2} in the direction shown in figure. In vector form VPO=R?4sin30i^+R?2cos30k^V_{PO}=-\frac{R?}{4}sin 30^{\circ}\widehat {i}+\frac{R?}{2}cos 30^{\circ}\widehat {k} =R?4i^+3R?4k^=-\frac{R?}{4}\widehat {i}+\frac{\sqrt3R?}{4}\widehat {k} But VPO=vPvOV_{PO}=v_P-v_O VP=vPOvO\therefore V_P=v_{PO}-v_O =(R?4i^+3R?4k^)+3R?i^=\bigg(-\frac{R?}{4}\widehat {i}+\frac{\sqrt3R?}{4}\widehat {k}\bigg)+3R?\widehat {i} =114R?i^+34R?k^=\frac{11}{4}R?\widehat {i}+\frac{\sqrt3}{4}R?\widehat {k}