Solveeit Logo

Question

Mathematics Question on Differential equations

The family of curves y=easin x, where a is an arbitrary constant, is represented by the differential equation

A

ylog y=tanx dydx\frac{dy}{dx}

B

ylog x=cotx dydx\frac{dy}{dx}

C

log y=tanx dydx\frac{dy}{dx}

D

log y=cotx dydx\frac{dy}{dx}

Answer

ylog y=tanx dydx\frac{dy}{dx}

Explanation

Solution

The correct answer is option (A): ylog y=tanx dydx\frac{dy}{dx}

y=easinxy=e^{a\,sin\,x}

logy=asinx....(i)\Rightarrow log\,y=a\,sin\,x....(i)

Differentiating w.r.t xx, we get

1y.dydx=acosx\frac{1}{y}.\frac{dy}{dx}=a\,cos\,x

a=1ycosxdydx\Rightarrow a=\frac{1}{y\,cos\,x}\frac{dy}{dx}

Putting the value of a in (I), we get,

ylog y=tanx dydx\frac{dy}{dx}