Solveeit Logo

Question

Question: The extreme values of \[4\cos \left( {{x^2}} \right)\cos \left[ {\left( {\dfrac{\pi }{3}} \right) + ...

The extreme values of 4cos(x2)cos[(π3)+x2]cos[(π3)x2]4\cos \left( {{x^2}} \right)\cos \left[ {\left( {\dfrac{\pi }{3}} \right) + {x^2}} \right]\cos \left[ {\left( {\dfrac{\pi }{3}} \right) - {x^2}} \right] over r are
(1) 1,1\left( 1 \right){\text{ }} - 1,1
(2) 2,2\left( 2 \right){\text{ }} - 2,2
(3) 3,3\left( 3 \right){\text{ }} - 3,3
(4) 4,4\left( 4 \right){\text{ }} - 4,4

Explanation

Solution

Try to simplify the expression by using formulas of cos(a+b)\cos \left( {a + b} \right) and cos(ab)\cos \left( {a - b} \right) then substitute the trigonometric values when needed. After that try to identify which identity you can be used here for further solving. Then just by using formulas or identities we will be able to do them. And remember that the range of the function cosθ\cos \theta is [1,1]\left[ { - 1,1} \right] .With the help of range you can find the extreme values.

Complete answer:
The given expression is 4cos(x2)cos[(π3)+x2]cos[(π3)x2]4\cos \left( {{x^2}} \right)\cos \left[ {\left( {\dfrac{\pi }{3}} \right) + {x^2}} \right]\cos \left[ {\left( {\dfrac{\pi }{3}} \right) - {x^2}} \right] .To find the extreme values, first we have to solve this expression. So, as we know that cos(a+b)=cosacosbsinasinb\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b and cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b .By applying these formulas in the given expression we get
4cos(x2).[cos(π3)cosx2sin(π3)sinx2].[cos(π3)cosx2+sin(π3)sinx2]\Rightarrow 4\cos \left( {{x^2}} \right).\left[ {\cos \left( {\dfrac{\pi }{3}} \right)\cos {x^2} - \sin \left( {\dfrac{\pi }{3}} \right)\sin {x^2}} \right].\left[ {\cos \left( {\dfrac{\pi }{3}} \right)\cos {x^2} + \sin \left( {\dfrac{\pi }{3}} \right)\sin {x^2}} \right] ------- (i)
The value of cos(π3)\cos \left( {\dfrac{\pi }{3}} \right) means the value of cos60\cos 60^\circ is 12\dfrac{1}{2} .Whereas the value of sin(π3)\sin \left( {\dfrac{\pi }{3}} \right) that is the value of sin60\sin 60^\circ is 32\dfrac{{\sqrt 3 }}{2} . So by putting these values in the equation (i) we get
4cos(x2).[12cosx232sinx2].[12cosx2+32sinx2]\Rightarrow 4\cos \left( {{x^2}} \right).\left[ {\dfrac{1}{2}\cos {x^2} - \dfrac{{\sqrt 3 }}{2}\sin {x^2}} \right].\left[ {\dfrac{1}{2}\cos {x^2} + \dfrac{{\sqrt 3 }}{2}\sin {x^2}} \right] ------- (ii)
We also know that (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) .Now observe the equation (ii). We get that in the above equation the term [12cosx232sinx2]\left[ {\dfrac{1}{2}\cos {x^2} - \dfrac{{\sqrt 3 }}{2}\sin {x^2}} \right] is (ab)\left( {a - b} \right) and the term [12cosx2+32sinx2]\left[ {\dfrac{1}{2}\cos {x^2} + \dfrac{{\sqrt 3 }}{2}\sin {x^2}} \right] is (a+b)\left( {a + b} \right) .So we can write the equation(ii) as
4cos(x2).[(12cosx2)2(32sinx2)2]\Rightarrow 4\cos \left( {{x^2}} \right).\left[ {{{\left( {\dfrac{1}{2}\cos {x^2}} \right)}^2} - {{\left( {\dfrac{{\sqrt 3 }}{2}\sin {x^2}} \right)}^2}} \right]
And on further solving the above equation becomes
4cos(x2).[14cos2x234sin2x2.]\Rightarrow 4\cos \left( {{x^2}} \right).\left[ {\dfrac{1}{4}{{\cos }^2}{x^2} - \dfrac{3}{4}{{\sin }^2}{x^2}.} \right]
Now take out 44 common from the square bracket
4cos(x2).14[cos2x23sin2x2.]\Rightarrow 4\cos \left( {{x^2}} \right).\dfrac{1}{4}\left[ {{{\cos }^2}{x^2} - 3{{\sin }^2}{x^2}.} \right]
The 44 in the numerator and the 44 in the denominator will cancel out each other and we are left with
cos(x2).[cos2x23sin2x2.]\Rightarrow \cos \left( {{x^2}} \right).\left[ {{{\cos }^2}{x^2} - 3{{\sin }^2}{x^2}.} \right] --------- (iii)
We know that cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 so we can write sin2x{\sin ^2}x as 1cos2x1 - {\cos ^2}x .Hence the equation (iii) becomes
cos(x2).[cos2x23(1cos2x2).]\Rightarrow \cos \left( {{x^2}} \right).\left[ {{{\cos }^2}{x^2} - 3\left( {1 - {{\cos }^2}{x^2}} \right).} \right]
Open the bracket by multiplying with 33
cos(x2).[cos2x23+3cos2x2]\Rightarrow \cos \left( {{x^2}} \right).\left[ {{{\cos }^2}{x^2} - 3 + 3{{\cos }^2}{x^2}} \right]
Add the similar terms inside the bracket
cos(x2).[4cos2x23]\Rightarrow \cos \left( {{x^2}} \right).\left[ {4{{\cos }^2}{x^2} - 3} \right]
On further solving the above equation becomes
4cos3x23cosx2\Rightarrow 4{\cos ^3}{x^2} - 3\cos {x^2} ----- (iv)
The above value is similar to the formula of cos of three times of θ\theta which is given by cos3θ=4cos3θ3cosθ\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta .So our equation (iv) becomes
cos(3x2)\Rightarrow \cos \left( {3{x^2}} \right)
As the value of cosθ\cos \theta lies between 1 - 1 and 11 that is 1cosθ1 - 1 \leqslant \cos \theta \leqslant 1 .So cos3θ\cos 3\theta can also lies between 1 - 1 and 11 .Here we have θ=x2\theta = {x^2} .Therefore we can write it as
1cos3x21\Rightarrow - 1 \leqslant \cos 3{x^2} \leqslant 1
Hence the required extreme values are 1 - 1 and 11 .
Thus, the correct option is (1) 1,1\left( 1 \right){\text{ }} - 1,1 .

Note:
You have to first learn all the formulas of trigonometry. You should know all the formulas so that you will be able to attend any question. Like in this question we use the formulas cos(a+b)\cos \left( {a + b} \right) and cos(ab)\cos \left( {a - b} \right) in the first step of out answer so there may be a chance of a mistake as both the formulas are similar. So learn, use and write them carefully.