Solveeit Logo

Question

Mathematics Question on Binomial theorem

The expression [x+(x31)1/2]5+[x(x31)1/2]5[x+(x^3-1)^{1/2}]^5 +[x-(x^3-1)^{1/2}]^5 is a polynomial of degree

A

5

B

6

C

7

D

8

Answer

7

Explanation

Solution

We know that,
(a+b)5+(ab)5=5C0a5+5C1a4b+5C2a3b2(a+b)^5+(a-b)^5= \, ^5C_0 a^5+ \, ^5C_1 a^4b+ \, ^5C_2 a^3b^2
+5C3a2b3+5C4ab4+5C5b5+5C0a55C1a4b\, \, \, \, \, + ^5C_3a^2b^3+ \, ^5C_4ab^4+ \, ^5C_5b^5+^5C_0 a^5- \, ^5C_1 a^4b
+5C2a3b25C4ab4+5C3a2b3+5C4ab45C5b5\, \, \, \, \, \, \, \, \, \, \, \, \, + ^5 C_2 a^3b^2- \, ^5C_4 ab^4+ \, ^5C_3 a^2b^3+ \, ^5C_4 ab^4- \, ^5C_5 b^5
=2[a5+10a3+b2+5ab64]\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =2[a^5+10a^3+b^2+5ab64]
[x+(x31)1/5]5+[x(x31)1/2]5\therefore \, [x+(x^3-1)^{1/5}]^5 + [ x-(x^3-1)^{1/2}]^5
=2 [x5+10x3(x31)+5x(x31)2][x^5+10x^3(x^3-1)+5x(x^3-1)^2]
Therefore, the given expression is a polynomial of degree 7.