Solveeit Logo

Question

Question: The expression \[\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)\] is equal to A). \[3\ta...

The expression tanA+tan(60+A)tan(60A)\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right) is equal to
A). 3tan3A3\tan 3A
B). tan3A\tan 3A
C). cot3A\cot 3A
D). sin3A\sin 3A

Explanation

Solution

In order to find the solution to the given multiple-choice question that is to find tanA+tan(60+A)tan(60A)\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)is equal to which of the given options, simplify the given trigonometric expression with help of following identities of tangent in trigonometry that are: tan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}, tan(xy)=tanxtany1+tanxtany\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}and tan3x=3tanxtan3x13tan2x\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}.

Complete step by step solution:
According to the question, given trigonometric expression in the question is as follows:
tanA+tan(60+A)tan(60A)...(1)\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)...\left( 1 \right)
To simplify the above expression, apply one of the trigonometric identities of tangent that istan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y} on tan(60+A)\tan \left( 60+A \right), we get:
tan(60+A)=tan60+tanA1tan60tanA\Rightarrow \tan \left( 60+A \right)=\dfrac{\tan {{60}^{\circ }}+\tan A}{1-\tan {{60}^{\circ }}\tan A}
We know that tan60=3\tan {{60}^{\circ }}=\sqrt{3}, substituting this value in the above equation, we get:
tan(60+A)=3+tanA13tanA...(2)\Rightarrow \tan \left( 60+A \right)=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}...\left( 2 \right)
Now apply another trigonometric identity of tangent that istan(xy)=tanxtany1+tanxtany\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y} on tan(60A)\tan \left( 60-A \right), we get:
tan(60A)=tan60tanA1+tan60tanA\Rightarrow \tan \left( 60-A \right)=\dfrac{\tan {{60}^{\circ }}-\tan A}{1+\tan {{60}^{\circ }}\tan A}
We know that tan60=3\tan {{60}^{\circ }}=\sqrt{3}, substituting this value in the above equation, we get:
tan(60+A)=3tanA1+3tanA...(3)\Rightarrow \tan \left( 60+A \right)=\dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}...\left( 3 \right)
Now with the help of the equation (2)\left( 2 \right) and (3)\left( 3 \right)we will first simplify, tan(60+A)tan(60A)\tan \left( 60+A \right)-\tan \left( 60-A \right) as follows:
tan(60+A)tan(60A)=3+tanA13tanA3tanA1+3tanA\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}-\dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}
To simplify it further, solve the terms in the right-hand side of the equation by taking the LCM, we get:
tan(60+A)tan(60A)=(3+tanA)(1+3tanA)(3tanA)(13tanA)(13tanA)(1+3tanA)\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{\left( \sqrt{3}+\tan A \right)\left( 1+\sqrt{3}\tan A \right)-\left( \sqrt{3}-\tan A \right)\left( 1-\sqrt{3}\tan A \right)}{\left( 1-\sqrt{3}\tan A \right)\left( 1+\sqrt{3}\tan A \right)}
Now the identity (a2b2)=(a+b)(ab)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right) on the denominator of the fraction in the right-hand side of the above equation, we get:
(3+tanA)(1+3tanA)(3tanA)(13tanA)12(3tanA)2\Rightarrow \dfrac{\left( \sqrt{3}+\tan A \right)\left( 1+\sqrt{3}\tan A \right)-\left( \sqrt{3}-\tan A \right)\left( 1-\sqrt{3}\tan A \right)}{{{1}^{2}}-{{\left( \sqrt{3}\tan A \right)}^{2}}}
To solve it further, open the brackets with help of multiplication and addition in the above equation, we get:
3+3tanA+tanA+3tan2A3+3tanA+tanA3tan2A13tan2A\Rightarrow \dfrac{\sqrt{3}+3\tan A+\tan A+\sqrt{3}{{\tan }^{2}}A-\sqrt{3}+3\tan A+\tan A-\sqrt{3}{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}
After solving the terms in the numerator of the above expression we get:
tan(60+A)tan(60A)=8tanA13tan2A...(4)\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{8\tan A}{1-3{{\tan }^{2}}A}...\left( 4 \right)
Now, substituting the value of the equation (4)\left( 4 \right) in the equation (1)\left( 1 \right), we get:
tanA+tan(60+A)tan(60A)=tanA+8tanA13tan2A\Rightarrow \tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)=\tan A+\dfrac{8\tan A}{1-3{{\tan }^{2}}A}
To simplify it further, solve the terms in the right-hand side of the equation by taking the LCM, we get:
tanA3tan3A+8tanA13tan2A\Rightarrow \dfrac{\tan A-3{{\tan }^{3}}A+8\tan A}{1-3{{\tan }^{2}}A}
After solving the terms in the numerator of the above expression, we get:
3(3tanAtan3A)13tan2A\Rightarrow \dfrac{3\left( 3\tan A-{{\tan }^{3}}A \right)}{1-3{{\tan }^{2}}A}
Now apply one of the trigonometric identities of tangent that is tan3x=3tanxtan3x13tan2x\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x} in the above expression, we get:
tanA+tan(60+A)tan(60A)=3tan3A\Rightarrow \tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)=3\tan 3A
Therefore, tanA+tan(60+A)tan(60A)\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right) is equal to 3tan3A3\tan 3Aand hence option (a) is the correct answer.

Note: Students usually get confused and interchange between the sign of the identities tan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}and tan(xy)=tanxtany1+tanxtany\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}. Key point is to remember the right formula/identity.