Solveeit Logo

Question

Question: The expression \[{\sin ^{ - 1}}\left( {\cos \left( {{{\sin }^{ - 1}}\left( x \right)} \right)} \righ...

The expression sin1(cos(sin1(x)))+cos1(sin(cos1(x))){\sin ^{ - 1}}\left( {\cos \left( {{{\sin }^{ - 1}}\left( x \right)} \right)} \right) + {\cos ^{ - 1}}\left( {\sin \left( {{{\cos }^{ - 1}}\left( x \right)} \right)} \right) is equal to
(a) π2\dfrac{\pi }{2}
(b) π4\dfrac{\pi }{4}
(c) 3π4\dfrac{{3\pi }}{4}
(d) 0

Explanation

Solution

Here, we need to find the value of the given expression. We will find the value of sin1(x){\sin ^{ - 1}}\left( x \right) in terms of cosine inverse of an angle. Similarly, we will find the value of cos1(x){\cos ^{ - 1}}\left( x \right) in terms of sine inverse of an angle. Then, we will use the obtained equations to simplify the given expression. Finally, we will use the identities for trigonometric inverse functions to simplify the expression further, and get the required answer.
Formula Used: We will use the following formulas:

  1. The sine of an angle θ\theta in a right angled triangle is given by sinθ=PH\sin \theta = \dfrac{P}{H}, where PP is the perpendicular and HH is the hypotenuse.
  2. The cosine of an angle θ\theta in a right angled triangle is given by cosθ=BH\cos \theta = \dfrac{B}{H}, where BB is the base and HH is the hypotenuse.
  3. The identities cos(cos1x)=x\cos \left( {{{\cos }^{ - 1}}x} \right) = x and sin(sin1x)=x\sin \left( {{{\sin }^{ - 1}}x} \right) = x.
  4. The sum of sin1x{\sin ^{ - 1}}x and cos1x{\cos ^{ - 1}}x is equal to π2\dfrac{\pi }{2}, if x<1\left| x \right| < 1, that is sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}.

Complete step by step solution:
Let sin1x=ϕ{\sin ^{ - 1}}x = \phi .
Rewriting the expression, we get
sinϕ=x\sin \phi = x
We know that the sine of an angle θ\theta in a right angled triangle is given by sinθ=PH\sin \theta = \dfrac{P}{H}.
From the equations sinϕ=x\sin \phi = x and sinϕ=PH\sin \phi = \dfrac{P}{H}, we get
x=PH x1=PH\begin{array}{l} \Rightarrow x = \dfrac{P}{H}\\\ \Rightarrow \dfrac{x}{1} = \dfrac{P}{H}\end{array}
Therefore, we get perpendicular =x = x and hypotenuse =1 = 1.
Now, the Pythagoras’s theorem states that the square of the hypotenuse is equal to the sum of the squares of the base and the perpendicular.
Thus, we get
H2=B2+P2{H^2} = {B^2} + {P^2}
Here, BB is the base.
Substituting perpendicular =x = x and hypotenuse =1 = 1 in the formula, we get
12=B2+x2 1=B2+x2\begin{array}{l} \Rightarrow {1^2} = {B^2} + {x^2}\\\ \Rightarrow 1 = {B^2} + {x^2}\end{array}
Rewriting the equation, we get
B2=1x2\Rightarrow {B^2} = 1 - {x^2}
Taking the square root on both the sides, we get
B=1x2\Rightarrow B = \sqrt {1 - {x^2}}
Now, the cosine of an angle θ\theta in a right angled triangle is given by cosθ=BH\cos \theta = \dfrac{B}{H}, where BB is the base and HH is the hypotenuse.
Thus, we get
cosϕ=1x21 cosϕ=1x2\begin{array}{l} \Rightarrow \cos \phi = \dfrac{{\sqrt {1 - {x^2}} }}{1}\\\ \Rightarrow \cos \phi = \sqrt {1 - {x^2}} \end{array}
Rewriting the equation, we get
cos1(1x2)=ϕ\Rightarrow {\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = \phi
From the equations sin1x=ϕ{\sin ^{ - 1}}x = \phi and cos1(1x2)=ϕ{\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = \phi , we get
sin1x=cos1(1x2)\Rightarrow {\sin ^{ - 1}}x = {\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right)
Now, let cos1x=θ{\cos ^{ - 1}}x = \theta .
Rewriting the expression, we get
cosθ=x\cos \theta = x
Now we know that the cosine of an angle θ\theta in a right angled triangle is given by cosθ=BH\cos \theta = \dfrac{B}{H}.
From the equations cosθ=x\cos \theta = x and cosθ=BH\cos \theta = \dfrac{B}{H}, we get
x=BH x1=BH\begin{array}{l} \Rightarrow x = \dfrac{B}{H}\\\ \Rightarrow \dfrac{x}{1} = \dfrac{B}{H}\end{array}
Therefore, we get base =x = x and hypotenuse =1 = 1.
From Pythagoras’s theorem, we have
H2=B2+P2{H^2} = {B^2} + {P^2}
Substituting base =x = x and hypotenuse =1 = 1 in the formula, we get
12=x2+P2 1=x2+P2\begin{array}{l} \Rightarrow {1^2} = {x^2} + {P^2}\\\ \Rightarrow 1 = {x^2} + {P^2}\end{array}
Rewriting the equation, we get
P2=1x2\Rightarrow {P^2} = 1 - {x^2}
Taking the square root on both the sides, we get
P=1x2\Rightarrow P = \sqrt {1 - {x^2}}
Using the formula sinθ=PH\sin \theta = \dfrac{P}{H}, we get
sinθ=1x21 sinθ=1x2\begin{array}{l} \Rightarrow \sin \theta = \dfrac{{\sqrt {1 - {x^2}} }}{1}\\\ \Rightarrow \sin \theta = \sqrt {1 - {x^2}} \end{array}
Rewriting the equation, we get
sin1(1x2)=θ\Rightarrow {\sin ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = \theta
From the equations cos1x=θ{\cos ^{ - 1}}x = \theta and sin1(1x2)=θ{\sin ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = \theta , we get
cos1x=sin1(1x2)\Rightarrow {\cos ^{ - 1}}x = {\sin ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right)
Now, we will simplify the given expression.
Substituting sin1x=cos1(1x2){\sin ^{ - 1}}x = {\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) and cos1x=sin1(1x2){\cos ^{ - 1}}x = {\sin ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) in the expression sin1(cos(sin1(x)))+cos1(sin(cos1(x))){\sin ^{ - 1}}\left( {\cos \left( {{{\sin }^{ - 1}}\left( x \right)} \right)} \right) + {\cos ^{ - 1}}\left( {\sin \left( {{{\cos }^{ - 1}}\left( x \right)} \right)} \right), we get
sin1(cos(sin1(x)))+cos1(sin(cos1(x))) =sin1(cos(cos1(1x2)))+cos1(sin(sin1(1x2)))\begin{array}{l} \Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {{{\sin }^{ - 1}}\left( x \right)} \right)} \right) + {\cos ^{ - 1}}\left( {\sin \left( {{{\cos }^{ - 1}}\left( x \right)} \right)} \right)\\\ = {\sin ^{ - 1}}\left( {\cos \left( {{{\cos }^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right)} \right)} \right) + {\cos ^{ - 1}}\left( {\sin \left( {{{\sin }^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right)} \right)} \right)\end{array}
We know that cos(cos1x)=x\cos \left( {{{\cos }^{ - 1}}x} \right) = x and sin(sin1x)=x\sin \left( {{{\sin }^{ - 1}}x} \right) = x.
Thus, we get
sin1(cos(sin1(x)))+cos1(sin(cos1(x)))=sin1(1x2)+cos1(1x2)\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {{{\sin }^{ - 1}}\left( x \right)} \right)} \right) + {\cos ^{ - 1}}\left( {\sin \left( {{{\cos }^{ - 1}}\left( x \right)} \right)} \right) = {\sin ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) + {\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right)
The sum of sin1x{\sin ^{ - 1}}x and cos1x{\cos ^{ - 1}}x is equal to π2\dfrac{\pi }{2}, if x<1\left| x \right| < 1, that is sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}.
Therefore, we get
sin1(cos(sin1(x)))+cos1(sin(cos1(x)))=π2\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {{{\sin }^{ - 1}}\left( x \right)} \right)} \right) + {\cos ^{ - 1}}\left( {\sin \left( {{{\cos }^{ - 1}}\left( x \right)} \right)} \right) = \dfrac{\pi }{2}
Thus, the value of the given expression is π2\dfrac{\pi }{2}.

\therefore The correct option is option (a).

Note:
We can apply the identity sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2} only if x<1\left| x \right| < 1.
We will verify that 1x2\left| {\sqrt {1 - {x^2}} } \right| is less than 1.
We know that the square of a number is always greater than 0.
Thus, we get
x2>0{x^2} > 0
The sign of inequality changes if both sides are multiplied by the same negative number.
Multiplying both sides by 1 - 1, we get
x2×(1)<\-0×(1) x2<0\begin{array}{l} \Rightarrow {x^2} \times \left( { - 1} \right) < \- 0 \times \left( { - 1} \right)\\\ \Rightarrow - {x^2} < 0\end{array}
Adding 1 on both sides, we get
x2+1<0+1 1x2<1\begin{array}{l} \Rightarrow - {x^2} + 1 < 0 + 1\\\ \Rightarrow 1 - {x^2} < 1\end{array}
Taking the square root on both the sides, we get
1x2<1 1x2<1 1x2<1\begin{array}{l} \Rightarrow \sqrt {1 - {x^2}} < \sqrt 1 \\\ \Rightarrow \sqrt {1 - {x^2}} < 1\\\ \Rightarrow \left| {\sqrt {1 - {x^2}} } \right| < 1\end{array}
Hence, we have proved that 1x2<1\left| {\sqrt {1 - {x^2}} } \right| < 1.