Solveeit Logo

Question

Physics Question on Motion in a plane

The expression of the trajectory of a projectile is given as y=pxqx2y = px - qx^2 , where yy and xx are respectively the vertical and horizontal displacements and pp and qq are constants. The time of flight of the projectile is

A

p24q\frac{p^{2}}{4q}

B

p22q\frac{p^{2}}{2q}

C

2pqg\sqrt{\frac{2p}{qg}}

D

p2qgp\sqrt{\frac{2}{qg}}

Answer

p2qgp\sqrt{\frac{2}{qg}}

Explanation

Solution

Given, y=pxqx2y = px - qx^{2}
ymaxwhendydx=0y_{max} when \frac{dy}{dx} = 0
p2qx=0\Rightarrow p - 2qx = 0
ymax\Rightarrow y_{max} or max height (H)=p24q\left(H\right) = \frac{p^{2}}{4q}
Now, H=ymax=uy22gH = y_{max} = \frac{u^{2}_{y}}{2g}
uy22g=p24q\Rightarrow \frac{u_{y}^{2}}{2g} = \frac{p^{2}}{4q}
uy=gp22q\Rightarrow u_{y} = \sqrt{\frac{gp^{2}}{2q}}
Also, T=T = time of flight
=2usinθg=2uyg= \frac{2u\, sin\, \theta}{g} = \frac{2u_{y}}{g}
=p2gq= p\sqrt{\frac{2}{gq}}