Solveeit Logo

Question

Question: The expression \[{\mathbf{lo}}{{\mathbf{g}}_{\mathbf{p}}}\]\[{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{...

The expression {\mathbf{lo}}{{\mathbf{g}}_{\mathbf{p}}}$$$${\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{............\sqrt[p]{p}}}}}}}, where p \geqslant 2,$$$$p \in N$$$$;n \in N when simplified is
A. Independent of p
B. Independent of p and of n
C. Dependent on both p and n
D. Positive

Explanation

Solution

In this we do not simplify the whole question while we simplify first the radical term I,e.
The term which contain ‘p’ terms simplified as
.........ppppp\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{.........\sqrt[p]{p}}}}}}} (n times radical sign)
=((((p)1p)1p)1p)1p= {\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)^{\dfrac{1}{p}}}(n times)
According to the property:
(xa)b=xab{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}

Complete step by step solution:
Simplifying from inside
logplogp......ppppp\Rightarrow {\log _p}\,{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{......\sqrt[p]{p}}}}}}}
logplogp(((((p)1p)1p)1p)........)1p\Rightarrow {\log _p}\,{\log _p}{\left( {{{\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{........}}} \right)^{\dfrac{1}{p}}}(n times)
logplogp((p)1p(x))\Rightarrow {\log _p}\,{\log _p}\,\left( {{{\left( p \right)}^{\dfrac{1}{{{p^{(x)}}}}}}} \right), according to the property of (xa)b=xab{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}.
logplogpp1pn\Rightarrow {\log _p}\,{\log _{p\,}}{p^{\dfrac{1}{{{p^n}}}}}
logp1pn(logpp)\Rightarrow {\log _p}\dfrac{1}{{{p^n}}}\left( {{{\log }_p}p} \right) (according to logxxa=alogxx{\log _x}{x^a} = a{\log _x}x).
logp1pn(1)\Rightarrow {\log _p}\dfrac{1}{{{p^n}}}(1) (logxx=1{\log _x}x = 1).
logp1logppn\Rightarrow {\log _p}1 - {\log _p}{p^n}
0nlogpp\Rightarrow 0 - n{\log _p}p
0n\Rightarrow 0 - n
n\Rightarrow \, - n.

Thus option A is correct, which is Independent of p.

Note: Without simplifying the ‘p’ part and using properties of the question is possible but it is way long and hard. So, this method is the best suitable method.