Question
Question: The expression \[{\mathbf{lo}}{{\mathbf{g}}_{\mathbf{p}}}\]\[{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{...
The expression {\mathbf{lo}}{{\mathbf{g}}_{\mathbf{p}}}$$$${\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{............\sqrt[p]{p}}}}}}}, where p \geqslant 2,$$$$p \in N$$$$;n \in N when simplified is
A. Independent of p
B. Independent of p and of n
C. Dependent on both p and n
D. Positive
Solution
In this we do not simplify the whole question while we simplify first the radical term I,e.
The term which contain ‘p’ terms simplified as
ppp.........pp (n times radical sign)
=(p)p1p1p1p1(n times)
According to the property:
(xa)b=xab
Complete step by step solution:
Simplifying from inside
⇒logplogpppp......pp
⇒logplogp(p)p1p1p1........p1(n times)
⇒logplogp(p)p(x)1, according to the property of (xa)b=xab.
⇒logplogpppn1
⇒logppn1(logpp) (according to logxxa=alogxx).
⇒logppn1(1) (logxx=1).
⇒logp1−logppn
⇒0−nlogpp
⇒0−n
⇒−n.
Thus option A is correct, which is Independent of p.
Note: Without simplifying the ‘p’ part and using properties of the question is possible but it is way long and hard. So, this method is the best suitable method.