Solveeit Logo

Question

Question: The expression $\frac{1}{1+\frac{x}{1-\frac{x}{1-x}}} \div \frac{\frac{1}{1-x}+\frac{1}{1+x}}{\frac{...

The expression 11+x1x1x÷11x+11+x11x11+x\frac{1}{1+\frac{x}{1-\frac{x}{1-x}}} \div \frac{\frac{1}{1-x}+\frac{1}{1+x}}{\frac{1}{1-x}-\frac{1}{1+x}} when simplified reduces to

Answer

x(12x)1xx2\frac{x(1-2x)}{1-x-x^2}

Explanation

Solution

Let the given expression be EE. We can write EE as E=A÷BE = A \div B, where

A=11+x1x1xA = \frac{1}{1+\frac{x}{1-\frac{x}{1-x}}} and B=11x+11+x11x11+xB = \frac{\frac{1}{1-x}+\frac{1}{1+x}}{\frac{1}{1-x}-\frac{1}{1+x}}.

First, simplify the expression in the denominator of AA:

1x1x=1(1x)x1x=1xx1x=12x1x1 - \frac{x}{1-x} = \frac{1(1-x) - x}{1-x} = \frac{1-x-x}{1-x} = \frac{1-2x}{1-x}.

Now substitute this back into the denominator of AA:

1+x1x1x=1+x12x1x=1+x(1x)12x1+\frac{x}{1-\frac{x}{1-x}} = 1+\frac{x}{\frac{1-2x}{1-x}} = 1+\frac{x(1-x)}{1-2x}.

Combine the terms in the denominator:

1+x(1x)12x=1(12x)+x(1x)12x=12x+xx212x=1xx212x1+\frac{x(1-x)}{1-2x} = \frac{1(1-2x) + x(1-x)}{1-2x} = \frac{1-2x + x-x^2}{1-2x} = \frac{1-x-x^2}{1-2x}.

So, A=11xx212x=12x1xx2A = \frac{1}{\frac{1-x-x^2}{1-2x}} = \frac{1-2x}{1-x-x^2}.

Next, simplify the expression BB.

The numerator of BB is 11x+11+x\frac{1}{1-x}+\frac{1}{1+x}. Find a common denominator (1x)(1+x)=1x2(1-x)(1+x) = 1-x^2:

11x+11+x=1(1+x)+1(1x)(1x)(1+x)=1+x+1x1x2=21x2\frac{1}{1-x}+\frac{1}{1+x} = \frac{1(1+x) + 1(1-x)}{(1-x)(1+x)} = \frac{1+x+1-x}{1-x^2} = \frac{2}{1-x^2}.

The denominator of BB is 11x11+x\frac{1}{1-x}-\frac{1}{1+x}. Find a common denominator (1x)(1+x)=1x2(1-x)(1+x) = 1-x^2:

11x11+x=1(1+x)1(1x)(1x)(1+x)=1+x1+x1x2=2x1x2\frac{1}{1-x}-\frac{1}{1+x} = \frac{1(1+x) - 1(1-x)}{(1-x)(1+x)} = \frac{1+x-1+x}{1-x^2} = \frac{2x}{1-x^2}.

Now, substitute these back into BB:

B=21x22x1x2B = \frac{\frac{2}{1-x^2}}{\frac{2x}{1-x^2}}. Assuming 1x201-x^2 \neq 0, we can cancel the denominator (1x2)(1-x^2):

B=22x=1xB = \frac{2}{2x} = \frac{1}{x}.

Finally, perform the division E=A÷BE = A \div B:

E=12x1xx2÷1x=12x1xx2×x=x(12x)1xx2E = \frac{1-2x}{1-x-x^2} \div \frac{1}{x} = \frac{1-2x}{1-x-x^2} \times x = \frac{x(1-2x)}{1-x-x^2}.

The simplified expression is x(12x)1xx2\frac{x(1-2x)}{1-x-x^2}.