Question
Question: The expression $\frac{1}{1+\frac{x}{1-\frac{x}{1-x}}} \div \frac{\frac{1}{1-x}+\frac{1}{1+x}}{\frac{...
The expression 1+1−1−xxx1÷1−x1−1+x11−x1+1+x1 when simplified reduces to

1−x−x2x(1−2x)
Solution
Let the given expression be E. We can write E as E=A÷B, where
A=1+1−1−xxx1 and B=1−x1−1+x11−x1+1+x1.
First, simplify the expression in the denominator of A:
1−1−xx=1−x1(1−x)−x=1−x1−x−x=1−x1−2x.
Now substitute this back into the denominator of A:
1+1−1−xxx=1+1−x1−2xx=1+1−2xx(1−x).
Combine the terms in the denominator:
1+1−2xx(1−x)=1−2x1(1−2x)+x(1−x)=1−2x1−2x+x−x2=1−2x1−x−x2.
So, A=1−2x1−x−x21=1−x−x21−2x.
Next, simplify the expression B.
The numerator of B is 1−x1+1+x1. Find a common denominator (1−x)(1+x)=1−x2:
1−x1+1+x1=(1−x)(1+x)1(1+x)+1(1−x)=1−x21+x+1−x=1−x22.
The denominator of B is 1−x1−1+x1. Find a common denominator (1−x)(1+x)=1−x2:
1−x1−1+x1=(1−x)(1+x)1(1+x)−1(1−x)=1−x21+x−1+x=1−x22x.
Now, substitute these back into B:
B=1−x22x1−x22. Assuming 1−x2=0, we can cancel the denominator (1−x2):
B=2x2=x1.
Finally, perform the division E=A÷B:
E=1−x−x21−2x÷x1=1−x−x21−2x×x=1−x−x2x(1−2x).
The simplified expression is 1−x−x2x(1−2x).