Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The expression tanA1cotA+cotA1tanA\frac{\tan A}{1-\cot A} + \frac{\cot A}{1 - \tan A} can be written as

A

secAcosecA+1\sec A \, cosec A + 1

B

tanA+cotA\tan A + \cot A

C

secA+cosecA\sec A + cosec A

D

sinAcosA+1\sin A \, \cos A + 1

Answer

secAcosecA+1\sec A \, cosec A + 1

Explanation

Solution

tanA1cotA+cotA1tanA\frac{\tan A}{1-\cot A} + \frac{\cot A}{1 - \tan A}
=sin2AcosA(sinAcosA)+cos2AsinA(cosAsinA)= \frac{\sin^{2} A}{\cos A \left(\sin A - \cos A \right)}+ \frac{\cos^{2} A}{\sin A \left( \cos A - \sin A \right)}
=sin3Acos3A(sinAcosA)cosAsinA= \frac{\sin^{3} A - \cos^{3} A}{\left(\sin A - \cos A\right) \cos A \sin A }
=(sinAcosA)(sin2A+sinAcosA+cos2A)(sinAcosA)sinAcosA= \frac{\left(\sin A - \cos A\right)\left(\sin^{2} A + \sin A \cos A+ \cos^{2} A\right)}{\left(\sin A - \cos A\right) \sin A \cos A}
=1+sinAcosAsinAcosA=1+secAcosecA= \frac{1+\sin A \cos A}{\sin A \cos A} = 1 + \sec A cosecA