Question
Mathematics Question on Some Properties of Definite Integrals
The expression \frac{\int_{0}^{n}[x]dx}{\int_{0}^{n}\left \\{ x\right \\}dx}, where [x] and {x} are respectively integral and fractional part of x and n∈N, is equal to
A
n−11
B
n1
C
n
D
n-1
Answer
n-1
Explanation
Solution
The correct answer is option (D): n-1
We have, ∫0n[x]dx
=∫010dx+∫121dx+∫232dx+.....+∫n−1n(n−1)dx
=0+1(2−1)+2(3−2)+....+(n−1)(n−(n−1))
1+2+3+…….+(n-1)=2n(n−1)(i)
and \int_{0}^{n}\left \\{ x \right \\}dx=\int_{0}^{n}(x-[x])dx=\int_{0}^{n}xdx-\int_{0}^{n}[x]dx
=2n2=2n(n−1)[using equation (i)]
=2n(n−n+1)=2n(ii)
\therefore \frac{\int_{0}^{n}[x]dx}{\int_{0}^{n}\left \\{ x \right \\}dx}=\frac{\frac{n(n-1)}{2}}{\frac{n}{2}}=(n-1)