Question
Question: The expression \(\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}\) can be written as...
The expression 1−cotAtanA+1−tanAcotA can be written as:
A. secAcosecA + 1
B. tan A + cot A
C. sec A + cosec A.
D. sin A cos A + 1
Solution
To solve this question, we will use some basic trigonometric identities to simplify the given expression. Some useful identities are: cotA=tanA1, cotA=sinAcosA, tanA=cosAsinA.
Complete step-by-step answer :
We have,
⇒1−cotAtanA+1−tanAcotA ……… (i)
Replacing cotA=tanA1 in equation (i), we will get
⇒1−tanA1tanA+1−tanAtanA1 ⇒tanA−1tan2A+tanA(1−tanA)1 ⇒tanA−1tan2A−tanA(tanA−1)1
Adding by taking L.C.M tanA(tanA−1)
⇒tanA(tanA−1)tan3A−1
Now, expanding tan3A−1 by using the identity a3−b3=(a−b)(a2+b2+ab)
We will get,
⇒tanA(tanA−1)(tanA−1)(tan2A+1+tanA)
Dividing numerator and denominator by (tanA−1),
⇒tanA(tan2A+1+tanA)
Solving this,
⇒tanA+cotA+1
Now, replacing cotA=sinAcosA and tanA=cosAsinA
⇒cosAsinA+sinAcosA+1
Adding by taking L.C.M,
⇒cosAsinAsin2A+cos2A+1
As we know that,
sin2A+cos2A=1
Putting this, we will get
Hence, the expression 1−cotAtanA+1−tanAcotA can be written as secAcosecA + 1.
Therefore, the correct answer is option(A).
Note : This question can also be solved by another method using the identities of sin A and cos A. The solution is as follows:
⇒1−cotAtanA+1−tanAcotA ⇒1−sinAcosAcosAsinA+1−cosAsinAsinAcosA
⇒cosA(sinA−cosA)sin2A−sinA(sinA−cosA)cos2A ⇒sinAcosA(sinA−cosA)sin3A−cos3A ⇒sinAcosA(sinA−cosA)(sinA−cosA)(sin2A+cos2A+sinAcosA) ⇒sinAcosA(1+sinAcosA) ⇒sinAcosA1+1 ⇒secAcosecA + 1