Solveeit Logo

Question

Question: The expression \(\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}\) can be written as...

The expression tanA1cotA+cotA1tanA\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} can be written as:
A. secAcosecA + 1{\text{secAcosecA + 1}}
B. tan A + cot A
C. sec A + cosec A.
D. sin A cos A + 1

Explanation

Solution

To solve this question, we will use some basic trigonometric identities to simplify the given expression. Some useful identities are: cotA=1tanA\cot A = \dfrac{1}{{\tan A}}, cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}}, tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}}.

Complete step-by-step answer :
We have,
tanA1cotA+cotA1tanA\Rightarrow \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} ……… (i)
Replacing cotA=1tanA\cot A = \dfrac{1}{{\tan A}} in equation (i), we will get
tanA11tanA+1tanA1tanA tan2AtanA1+1tanA(1tanA) tan2AtanA11tanA(tanA1)  \Rightarrow \dfrac{{\tan A}}{{1 - \dfrac{1}{{\tan A}}}} + \dfrac{{\dfrac{1}{{\tan A}}}}{{1 - \tan A}} \\\ \Rightarrow \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} + \dfrac{1}{{\tan A\left( {1 - \tan A} \right)}} \\\ \Rightarrow \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} - \dfrac{1}{{\tan A\left( {\tan A - 1} \right)}} \\\
Adding by taking L.C.M tanA(tanA1)\tan A\left( {\tan A - 1} \right)
tan3A1tanA(tanA1)\Rightarrow \dfrac{{{{\tan }^3}A - 1}}{{\tan A\left( {\tan A - 1} \right)}}
Now, expanding tan3A1{\tan ^3}A - 1 by using the identity a3b3=(ab)(a2+b2+ab){a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)
We will get,
(tanA1)(tan2A+1+tanA)tanA(tanA1)\Rightarrow \dfrac{{\left( {\tan A - 1} \right)\left( {{{\tan }^2}A + 1 + \tan A} \right)}}{{\tan A\left( {\tan A - 1} \right)}}
Dividing numerator and denominator by (tanA1)\left( {\tan A - 1} \right),
(tan2A+1+tanA)tanA\Rightarrow \dfrac{{\left( {{{\tan }^2}A + 1 + \tan A} \right)}}{{\tan A}}
Solving this,
tanA+cotA+1\Rightarrow \tan A + \cot A + 1
Now, replacing cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}} and tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}}
sinAcosA+cosAsinA+1\Rightarrow \dfrac{{\sin A}}{{\cos A}} + \dfrac{{\cos A}}{{\sin A}} + 1
Adding by taking L.C.M,
sin2A+cos2AcosAsinA+1\Rightarrow \dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{\cos A\sin A}} + 1
As we know that,
sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1
Putting this, we will get

1cosAsinA+1 1cosA×1sinA+1 secAcosecA+1  \Rightarrow \dfrac{1}{{\cos A\sin A}} + 1 \\\ \Rightarrow \dfrac{1}{{\cos A}} \times \dfrac{1}{{\sin A}} + 1 \\\ \Rightarrow {\text{secAcosecA}} + 1 \\\

Hence, the expression tanA1cotA+cotA1tanA\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} can be written as secAcosecA + 1.
Therefore, the correct answer is option(A).

Note : This question can also be solved by another method using the identities of sin A and cos A. The solution is as follows:
tanA1cotA+cotA1tanA sinAcosA1cosAsinA+cosAsinA1sinAcosA   \Rightarrow \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} \\\ \Rightarrow \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} \\\ \\\
sin2AcosA(sinAcosA)cos2AsinA(sinAcosA) sin3Acos3AsinAcosA(sinAcosA) (sinAcosA)(sin2A+cos2A+sinAcosA)sinAcosA(sinAcosA) (1+sinAcosA)sinAcosA 1sinAcosA+1 secAcosecA + 1  \Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A\left( {\sin A - \cos A} \right)}} - \dfrac{{{{\cos }^2}A}}{{\sin A\left( {\sin A - \cos A} \right)}} \\\ \Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A\left( {\sin A - \cos A} \right)}} \\\ \Rightarrow \dfrac{{\left( {\sin A - \cos A} \right)\left( {{{\sin }^2}A + {{\cos }^2}A + \sin A\cos A} \right)}}{{\sin A\cos A\left( {\sin A - \cos A} \right)}} \\\ \Rightarrow \dfrac{{\left( {1 + \sin A\cos A} \right)}}{{\sin A\cos A}} \\\ \Rightarrow \dfrac{1}{{\sin A\cos A}} + 1 \\\ \Rightarrow {\text{secAcosecA + 1}} \\\