Solveeit Logo

Question

Question: The expression \(\cos^{2}(A - B) + \cos^{2}B - 2\cos(A - B)\cos A\cos B\) is...

The expression cos2(AB)+cos2B2cos(AB)cosAcosB\cos^{2}(A - B) + \cos^{2}B - 2\cos(A - B)\cos A\cos B is

A

Dependent on B

B

Dependent on A and B

C

Dependent on A

D

Independent of A and B

Answer

Dependent on A

Explanation

Solution

cos2(AB)+cos2B2cos(AB)cosAcosB\cos^{2}(A - B) + \cos^{2}B - 2\cos(A - B)\cos A\cos B

=cos2(AB)+cos2Bcos(AB){cos(AB)+cos(A+B)}= \cos^{2}(A - B) + \cos^{2}B - \cos(A - B)\left\{ \cos(A - B) + \cos(A + B) \right\}

=cos2Bcos(AB)cos(A+B)= \cos^{2}B - \cos(A - B)\cos{}(A + B)

=cos2B(cos2Asin2B)=1cos2A= \cos^{2}B - (\cos^{2}A - \sin^{2}B) = 1 - \cos^{2}A

Hence it depends on A.

Trick : Put two different values of A.

Let A=90o,A = 90^{o}, then the value of expression will be

sin2B+cos2B=1\sin^{2}B + \cos^{2}B = 1

Now put A=0oA = 0^{o}, then the value of expression will be

cos2B+cos2B2cos2B=0\cos^{2}B + \cos^{2}B - 2\cos^{2}B = 0

It means that the expression has different values for different

A i.e. it depends on A.

Now similarly for B=90o,B = 90^{o}, the value of expression will be

sin2A+00=sin2A\sin^{2}A + 0 - 0 = \sin^{2}A and at B=0oB = 0^{o} the value of expression

will be cos2A+12cos2A=sin2A\cos^{2}A + 1 - 2\cos^{2}A = \sin^{2}A.

Hence, the expression has the same value for different values

of B, so it does not depend on B.