Question
Question: The expression \(\cos^{2}(A - B) + \cos^{2}B - 2\cos(A - B)\cos A\cos B\) is...
The expression cos2(A−B)+cos2B−2cos(A−B)cosAcosB is
Dependent on B
Dependent on A and B
Dependent on A
Independent of A and B
Dependent on A
Solution
cos2(A−B)+cos2B−2cos(A−B)cosAcosB
=cos2(A−B)+cos2B−cos(A−B){cos(A−B)+cos(A+B)}
=cos2B−cos(A−B)cos(A+B)
=cos2B−(cos2A−sin2B)=1−cos2A
Hence it depends on A.
Trick : Put two different values of A.
Let A=90o, then the value of expression will be
sin2B+cos2B=1
Now put A=0o, then the value of expression will be
cos2B+cos2B−2cos2B=0
It means that the expression has different values for different
A i.e. it depends on A.
Now similarly for B=90o, the value of expression will be
sin2A+0−0=sin2A and at B=0o the value of expression
will be cos2A+1−2cos2A=sin2A.
Hence, the expression has the same value for different values
of B, so it does not depend on B.