Solveeit Logo

Question

Question: The expression \( \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{1...

The expression cos10π13+cos8π13+cos3π13+cos5π13\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} is
A. 1- 1
B. 00
C. 11
D.None of these

Explanation

Solution

Hint : We can see that in the given question, we have a trigonometric function, as cosine or cos\cos is a trigonometric ratio. So we will apply the trigonometric identity to solve this question, such as
cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta .
We will try to bring the first and second term similar to the other two terms by using this formula.

Complete step-by-step answer :
Here we have been given
cos10π13+cos8π13+cos3π13+cos5π13\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} .
Let us take the first term i.e.
cos10π13\cos \dfrac{{10\pi }}{{13}} .
We can write this also as
cos(π3π13)\cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) , as on simplifying it gives us the original value i.e.
cos(13π3π13)=cos(10π13)\cos \left( {\dfrac{{13\pi - 3\pi }}{{13}}} \right) = \cos \left( {\dfrac{{10\pi }}{{13}}} \right)
Now we will take the second term
cos8π13\cos \dfrac{{8\pi }}{{13}} .
Again we can write this also as
cos(π5π13)\cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) , as on simplifying it gives us the original value i.e.
cos(13π5π13)=cos(8π13)\cos \left( {\dfrac{{13\pi - 5\pi }}{{13}}} \right) = \cos \left( {\dfrac{{8\pi }}{{13}}} \right) .
Now by applying the trigonometric identity, we can write
cos(π3π13)=cos3π13\cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) = - \cos \dfrac{{3\pi }}{{13}}
Similarly , we can write
cos(π5π13)=cos5π13\cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) = - \cos \dfrac{{5\pi }}{{13}}
By putting the values back in the expression we can write :
cos3π13+(cos5π13)+cos3π13+cos5π13- \cos \dfrac{{3\pi }}{{13}} + \left( { - \cos \dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} .
By arranging the terms, we have :
cos3π13cos3π13+cos5π13cos5π13\cos \dfrac{{3\pi }}{{13}} - \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} - \cos \dfrac{{5\pi }}{{13}} .
It gives us the value 00 .
Hence the correct option is (b) 00 .
So, the correct answer is “Option b”.

Note : We should note that we can also solve this question, with an alternate method. We will take the first and the term together and the second and fourth term together .
So we have
cos10π13+cos3π13+cos5π13+cos8π13\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} .
We will use the formula
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
By applying the formula we can write :
2cos(10π13+3π132)+cos(8π135π132)2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right) .
On simplifying the value we have:
2cos(10π+3π132)+cos(8π5π132)=2cos(13π132)+cos(3π132)2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right)
We can cancel the same factors from numerator and denominator and we have:
2cos(π2)cos(3π26)2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right)
We know that the value of
cos(π2)=0\cos \left( {\dfrac{\pi }{2}} \right) = 0 , so anything multiplied by this will also give the result as zero.
Hence our answer is
2×0×cos(3π26)=02 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0 .