Solveeit Logo

Question

Question: The expression \[\cos 3\theta +\sin 3\theta +\left( 2\sin 2\theta -3 \right)\left( \sin \theta -\cos...

The expression cos3θ+sin3θ+(2sin2θ3)(sinθcosθ)\cos 3\theta +\sin 3\theta +\left( 2\sin 2\theta -3 \right)\left( \sin \theta -\cos \theta \right) is positive for all θ\theta in
(a) (2nπ3π4,2nπ+π4),nZ\left( 2n\pi -\dfrac{3\pi }{4},2n\pi +\dfrac{\pi }{4} \right),n\in Z
(b) (2nππ4,2nπ+π6),nZ\left( 2n\pi -\dfrac{\pi }{4},2n\pi +\dfrac{\pi }{6} \right),n\in Z
(c) (2nππ3,2nπ+π3),nZ\left( 2n\pi -\dfrac{\pi }{3},2n\pi +\dfrac{\pi }{3} \right),n\in Z
(d) (2nππ4,2nπ+3π4),nZ\left( 2n\pi -\dfrac{\pi }{4},2n\pi +\dfrac{3\pi }{4} \right),n\in Z

Explanation

Solution

We start solving the problem by substituting the results cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta , sin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta in the given equation. We then make the necessary calculations and then make use of the results x3y3=(xy)(x2+y2+xy){{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+{{y}^{2}}+xy \right), cos2α+sin2α=1{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1 to proceed through the problem. We then divide the obtained inequality with 2\sqrt{2} on both sides and make use of the results sin(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}, cosAcosBsinAsinB=cos(A+B)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) to proceed through the problem. We then use of the result that if cosx>0\cos x>0, then the general solution set of x will be x(2nππ2,2nπ+π2)x\in \left( 2n\pi -\dfrac{\pi }{2},2n\pi +\dfrac{\pi }{2} \right), nZn\in Z to get the required answer.

Complete step by step answer:
According to the problem, we are asked to find the values of θ\theta for which the expression cos3θ+sin3θ+(2sin2θ3)(sinθcosθ)\cos 3\theta +\sin 3\theta +\left( 2\sin 2\theta -3 \right)\left( \sin \theta -\cos \theta \right) is positive.
We have cos3θ+sin3θ+(2sin2θ3)(sinθcosθ)>0\cos 3\theta +\sin 3\theta +\left( 2\sin 2\theta -3 \right)\left( \sin \theta -\cos \theta \right)>0 ---(1).
We know that cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta , sin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . Let us use these results in equation (1).
4cos3θ3cosθ+3sinθ4sin3θ+(4sinθcosθ3)(sinθcosθ)>0\Rightarrow 4{{\cos }^{3}}\theta -3\cos \theta +3\sin \theta -4{{\sin }^{3}}\theta +\left( 4\sin \theta \cos \theta -3 \right)\left( \sin \theta -\cos \theta \right)>0.
4cos3θ3cosθ+3sinθ4sin3θ+4sin2θcosθ3sinθ4sinθcos2θ+3cosθ>0\Rightarrow 4{{\cos }^{3}}\theta -3\cos \theta +3\sin \theta -4{{\sin }^{3}}\theta +4{{\sin }^{2}}\theta \cos \theta -3\sin \theta -4\sin \theta {{\cos }^{2}}\theta +3\cos \theta >0.
4cos3θ4sin3θ+4sin2θcosθ4sinθcos2θ>0\Rightarrow 4{{\cos }^{3}}\theta -4{{\sin }^{3}}\theta +4{{\sin }^{2}}\theta \cos \theta -4\sin \theta {{\cos }^{2}}\theta >0.
cos3θsin3θ+sin2θcosθsinθcos2θ>0\Rightarrow {{\cos }^{3}}\theta -{{\sin }^{3}}\theta +{{\sin }^{2}}\theta \cos \theta -\sin \theta {{\cos }^{2}}\theta >0 ---(2).
We know that x3y3=(xy)(x2+y2+xy){{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+{{y}^{2}}+xy \right). Let us use this result in equation (2).
(cosθsinθ)(cos2θ+sin2θ+cosθsinθ)sinθcosθ(cosθsinθ)>0\Rightarrow \left( \cos \theta -\sin \theta \right)\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +\cos \theta \sin \theta \right)-\sin \theta \cos \theta \left( \cos \theta -\sin \theta \right)>0 ---(3).
We know that cos2α+sin2α=1{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1. Let us use this result in equation (3).
(cosθsinθ)(1+cosθsinθ)sinθcosθ(cosθsinθ)>0\Rightarrow \left( \cos \theta -\sin \theta \right)\left( 1+\cos \theta \sin \theta \right)-\sin \theta \cos \theta \left( \cos \theta -\sin \theta \right)>0.
(cosθsinθ)(1+cosθsinθsinθcosθ)>0\Rightarrow \left( \cos \theta -\sin \theta \right)\left( 1+\cos \theta \sin \theta -\sin \theta \cos \theta \right)>0.
(cosθsinθ)>0\Rightarrow \left( \cos \theta -\sin \theta \right)>0 ---(4).
Let us divide both sides of equation (4) with 2\sqrt{2}.
12cosθ12sinθ>0\Rightarrow \dfrac{1}{\sqrt{2}}\cos \theta -\dfrac{1}{\sqrt{2}}\sin \theta >0 ---(5).
We know that sin(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}. Let us use this result in equation (5).
cos(π4)cosθsin(π4)sinθ>0\Rightarrow \cos \left( \dfrac{\pi }{4} \right)\cos \theta -\sin \left( \dfrac{\pi }{4} \right)\sin \theta >0 ---(6).
We know that cosAcosBsinAsinB=cos(A+B)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right). Let us use this result in equation (6).
cos(π4+θ)>0\Rightarrow \cos \left( \dfrac{\pi }{4}+\theta \right)>0 ---(7).
We know that if cosx>0\cos x>0, then the general solution set of x will be x(2nππ2,2nπ+π2)x\in \left( 2n\pi -\dfrac{\pi }{2},2n\pi +\dfrac{\pi }{2} \right), nZn\in Z. Let us use this result in equation (7).
So, we get π4+θ(2nππ2,2nπ+π2)\dfrac{\pi }{4}+\theta \in \left( 2n\pi -\dfrac{\pi }{2},2n\pi +\dfrac{\pi }{2} \right).
θ(2nππ2π4,2nπ+π2π4)\Rightarrow \theta \in \left( 2n\pi -\dfrac{\pi }{2}-\dfrac{\pi }{4},2n\pi +\dfrac{\pi }{2}-\dfrac{\pi }{4} \right).
θ(2nπ3π4,2nπ+π4)\Rightarrow \theta \in \left( 2n\pi -\dfrac{3\pi }{4},2n\pi +\dfrac{\pi }{4} \right), nZn\in Z.
So, we have found the solution set for the given equation cos3θ+sin3θ+(2sin2θ3)(sinθcosθ)\cos 3\theta +\sin 3\theta +\left( 2\sin 2\theta -3 \right)\left( \sin \theta -\cos \theta \right) as θ(2nπ3π4,2nπ+π4)\theta \in \left( 2n\pi -\dfrac{3\pi }{4},2n\pi +\dfrac{\pi }{4} \right), nZn\in Z.

So, the correct answer is “Option a”.

Note: We need to perform each step carefully in order to avoid confusion. We should be confused while applying the formulas of cos3θ\cos 3\theta , sin3θ\sin 3\theta and sin2θ\sin 2\theta while solving this problem. We should not confuse the general solution set while solving the problems related to trigonometric equations. Similarly, we can expect problems to find the principle solution for the given problem.