Question
Question: The expression \[\cos 3\theta +\sin 3\theta +\left( 2\sin 2\theta -3 \right)\left( \sin \theta -\cos...
The expression cos3θ+sin3θ+(2sin2θ−3)(sinθ−cosθ) is positive for all θ in
(a) (2nπ−43π,2nπ+4π),n∈Z
(b) (2nπ−4π,2nπ+6π),n∈Z
(c) (2nπ−3π,2nπ+3π),n∈Z
(d) (2nπ−4π,2nπ+43π),n∈Z
Solution
We start solving the problem by substituting the results cos3θ=4cos3θ−3cosθ, sin3θ=3sinθ−4sin3θ and sin2θ=2sinθcosθ in the given equation. We then make the necessary calculations and then make use of the results x3−y3=(x−y)(x2+y2+xy), cos2α+sin2α=1 to proceed through the problem. We then divide the obtained inequality with 2 on both sides and make use of the results sin(4π)=21, cosAcosB−sinAsinB=cos(A+B) to proceed through the problem. We then use of the result that if cosx>0, then the general solution set of x will be x∈(2nπ−2π,2nπ+2π), n∈Z to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the values of θ for which the expression cos3θ+sin3θ+(2sin2θ−3)(sinθ−cosθ) is positive.
We have cos3θ+sin3θ+(2sin2θ−3)(sinθ−cosθ)>0 ---(1).
We know that cos3θ=4cos3θ−3cosθ, sin3θ=3sinθ−4sin3θ and sin2θ=2sinθcosθ. Let us use these results in equation (1).
⇒4cos3θ−3cosθ+3sinθ−4sin3θ+(4sinθcosθ−3)(sinθ−cosθ)>0.
⇒4cos3θ−3cosθ+3sinθ−4sin3θ+4sin2θcosθ−3sinθ−4sinθcos2θ+3cosθ>0.
⇒4cos3θ−4sin3θ+4sin2θcosθ−4sinθcos2θ>0.
⇒cos3θ−sin3θ+sin2θcosθ−sinθcos2θ>0 ---(2).
We know that x3−y3=(x−y)(x2+y2+xy). Let us use this result in equation (2).
⇒(cosθ−sinθ)(cos2θ+sin2θ+cosθsinθ)−sinθcosθ(cosθ−sinθ)>0 ---(3).
We know that cos2α+sin2α=1. Let us use this result in equation (3).
⇒(cosθ−sinθ)(1+cosθsinθ)−sinθcosθ(cosθ−sinθ)>0.
⇒(cosθ−sinθ)(1+cosθsinθ−sinθcosθ)>0.
⇒(cosθ−sinθ)>0 ---(4).
Let us divide both sides of equation (4) with 2.
⇒21cosθ−21sinθ>0 ---(5).
We know that sin(4π)=21. Let us use this result in equation (5).
⇒cos(4π)cosθ−sin(4π)sinθ>0 ---(6).
We know that cosAcosB−sinAsinB=cos(A+B). Let us use this result in equation (6).
⇒cos(4π+θ)>0 ---(7).
We know that if cosx>0, then the general solution set of x will be x∈(2nπ−2π,2nπ+2π), n∈Z. Let us use this result in equation (7).
So, we get 4π+θ∈(2nπ−2π,2nπ+2π).
⇒θ∈(2nπ−2π−4π,2nπ+2π−4π).
⇒θ∈(2nπ−43π,2nπ+4π), n∈Z.
So, we have found the solution set for the given equation cos3θ+sin3θ+(2sin2θ−3)(sinθ−cosθ) as θ∈(2nπ−43π,2nπ+4π), n∈Z.
So, the correct answer is “Option a”.
Note: We need to perform each step carefully in order to avoid confusion. We should be confused while applying the formulas of cos3θ, sin3θ and sin2θ while solving this problem. We should not confuse the general solution set while solving the problems related to trigonometric equations. Similarly, we can expect problems to find the principle solution for the given problem.