Question
Question: The expression \(3\left[ {{\sin }^{4}}\left\\{ \dfrac{3\pi }{2}-\alpha \right\\}+{{\sin }^{4}}\left(...
The expression 3\left[ {{\sin }^{4}}\left\\{ \dfrac{3\pi }{2}-\alpha \right\\}+{{\sin }^{4}}\left( 3\pi +\alpha \right) \right]-2\left[ {{\sin }^{6}}\left\\{ \dfrac{\pi }{2}+\alpha \right\\}+{{\sin }^{6}}\left( 5\pi -\alpha \right) \right] is equal to:
A. 0
B. 1
C. 3
D. None
Solution
Hint: For the above question we will use the quadrant properties of the trigonometric function. We know that in IInd and Ist quadrant sinθ is always positive otherwise it is negative. Also, we will use the identity as follows:
sin(2π+θ)=cosθsin(23π−θ)=−cosθ
So, by using the above properties and identity we will get the value of the expression.
Complete step-by-step answer:
We have been asked to find the value of the expression,
3\left[ {{\sin }^{4}}\left\\{ \dfrac{3\pi }{2}-\alpha \right\\}+{{\sin }^{4}}\left( 3\pi +\alpha \right) \right]-2\left[ {{\sin }^{6}}\left\\{ \dfrac{\pi }{2}+\alpha \right\\}+{{\sin }^{6}}\left( 5\pi -\alpha \right) \right]
We know that sin(23π−θ) lies in the IIIrdquadrant and equals to (−cosθ).
⇒sin4(23π−α)=(−cosα)4=cos4α
Again, we know that sin(3π+θ) lies in the IIIrdquadrant and equals −sinθ.
⇒sin4(3π+α)=(−sinα)4=sin4α
We know that sin(2π+θ) lies in the IInd quadrant and equals to cosθ.
⇒sin6(2π+d)=(cosα)6=cos6α
Also, we know that sin(π−θ) lies in the IInd quadrant and equals sinθ.
⇒sin6(5π−α)=(sinα)6=sin6α
On substituting these values in the given expression, we get,
=3[cos4α+sin4α]−2[cos6α+sin6α]
Now, using the identity as follows;
a4+b4=(a2+b2)2−2a2b2 anda6+b6=(a2+b2)3−3a2b2(a2+b2)=3[(cos2α+sin2α)2−2cos2αsin2α]−2[(cos2α+sin2α)3−3cos2αsin2α×(cos2α+sin2α)]Since, we know the trigonometric identity sin2θ+cos2θ=1.
⇒3[(1)2−2cos2αsin2α]−2[(1)3−3cos2αsin2α(1)]=3−6cos2αsin2α−2+6cos2αsin2α=(3−2)−6cos2αsin2α+6cos2αsin2α=1
Hence, the given expression is equal to 1.
Therefore, the correct option is option B.
Note: Be careful while using the trigonometric properties and their identities also take care of the sign mistake during calculation in each step.
Also, remember the property that, sin(2(2n+1)π+θ)=(−1)ncosθ where ‘n’ is any whole number and sin(nπ+θ)=(−1)nsinθ. These properties will help you in these types of questions.