Solveeit Logo

Question

Question: The expression \(3\left[ {{\sin }^{4}}\left\\{ \dfrac{3\pi }{2}-\alpha \right\\}+{{\sin }^{4}}\left(...

The expression 3\left[ {{\sin }^{4}}\left\\{ \dfrac{3\pi }{2}-\alpha \right\\}+{{\sin }^{4}}\left( 3\pi +\alpha \right) \right]-2\left[ {{\sin }^{6}}\left\\{ \dfrac{\pi }{2}+\alpha \right\\}+{{\sin }^{6}}\left( 5\pi -\alpha \right) \right] is equal to:
A. 0
B. 1
C. 3
D. None

Explanation

Solution

Hint: For the above question we will use the quadrant properties of the trigonometric function. We know that in IIndI{{I}^{nd}} and Ist{{I}^{st}} quadrant sinθ\sin \theta is always positive otherwise it is negative. Also, we will use the identity as follows:
sin(π2+θ)=cosθ sin(3π2θ)=cosθ \begin{aligned} & \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta \\\ & \sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta \\\ \end{aligned}
So, by using the above properties and identity we will get the value of the expression.

Complete step-by-step answer:

We have been asked to find the value of the expression,
3\left[ {{\sin }^{4}}\left\\{ \dfrac{3\pi }{2}-\alpha \right\\}+{{\sin }^{4}}\left( 3\pi +\alpha \right) \right]-2\left[ {{\sin }^{6}}\left\\{ \dfrac{\pi }{2}+\alpha \right\\}+{{\sin }^{6}}\left( 5\pi -\alpha \right) \right]
We know that sin(3π2θ)\sin \left( \dfrac{3\pi }{2}-\theta \right) lies in the IIIrdII{{I}^{rd}}quadrant and equals to (cosθ)\left( -\cos \theta \right).
sin4(3π2α)=(cosα)4=cos4α\Rightarrow {{\sin }^{4}}\left( \dfrac{3\pi }{2}-\alpha \right)={{\left( -\cos \alpha \right)}^{4}}={{\cos }^{4}}\alpha
Again, we know that sin(3π+θ)\sin \left( 3\pi +\theta \right) lies in the IIIrdII{{I}^{rd}}quadrant and equals sinθ-\sin \theta .
sin4(3π+α)=(sinα)4=sin4α\Rightarrow {{\sin }^{4}}\left( 3\pi +\alpha \right)={{\left( -\sin \alpha \right)}^{4}}={{\sin }^{4}}\alpha
We know that sin(π2+θ)\sin \left( \dfrac{\pi }{2}+\theta \right) lies in the IIndI{{I}^{nd}} quadrant and equals to cosθ\cos \theta .
sin6(π2+d)=(cosα)6=cos6α\Rightarrow {{\sin }^{6}}\left( \dfrac{\pi }{2}+d \right)={{\left( \cos \alpha \right)}^{6}}={{\cos }^{6}}\alpha
Also, we know that sin(πθ)\sin \left( \pi -\theta \right) lies in the IIndI{{I}^{nd}} quadrant and equals sinθ\sin \theta .
sin6(5πα)=(sinα)6=sin6α\Rightarrow {{\sin }^{6}}\left( 5\pi -\alpha \right)={{\left( \sin \alpha \right)}^{6}}={{\sin }^{6}}\alpha
On substituting these values in the given expression, we get,
=3[cos4α+sin4α]2[cos6α+sin6α]=3\left[ {{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha \right]-2\left[ {{\cos }^{6}}\alpha +{{\sin }^{6}}\alpha \right]
Now, using the identity as follows;
a4+b4=(a2+b2)22a2b2 and a6+b6=(a2+b2)33a2b2(a2+b2) =3[(cos2α+sin2α)22cos2αsin2α]2[(cos2α+sin2α)33cos2αsin2α×(cos2α+sin2α)] \begin{aligned} & {{a}^{4}}+{{b}^{4}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}\ and \\\ & {{a}^{6}}+{{b}^{6}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{3}}-3{{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right) \\\ & =3\left[ {{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right]-2\left[ {{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{3}}-3{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \times \left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right) \right] \\\ \end{aligned}Since, we know the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
3[(1)22cos2αsin2α]2[(1)33cos2αsin2α(1)] =36cos2αsin2α2+6cos2αsin2α =(32)6cos2αsin2α+6cos2αsin2α =1 \begin{aligned} & \Rightarrow 3\left[ {{\left( 1 \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right]-2\left[ {{\left( 1 \right)}^{3}}-3{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \left( 1 \right) \right] \\\ & =3-6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha -2+6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \\\ & =\left( 3-2 \right)-6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha +6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \\\ & =1 \\\ \end{aligned}
Hence, the given expression is equal to 1.
Therefore, the correct option is option B.

Note: Be careful while using the trigonometric properties and their identities also take care of the sign mistake during calculation in each step.
Also, remember the property that, sin((2n+1)π2+θ)=(1)ncosθ\sin \left( \dfrac{\left( 2n+1 \right)\pi }{2}+\theta \right)={{\left( -1 \right)}^{n}}\cos \theta where ‘n’ is any whole number and sin(nπ+θ)=(1)nsinθ\sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta . These properties will help you in these types of questions.