Question
Mathematics Question on Trigonometric Functions
The expression 3[sin4(23π−α)+sin4(3π+α)]−2[sin6(2π+α)+sin6(5π−α)] is equal to
A
0
B
1
C
3
D
sin4α+cos6α
Answer
1
Explanation
Solution
The correct answer is B:1
3[sin4(23π−α)+sin4(3π+α)]−2[sin6(2π+α)+sin6(5π−α)]
=3(cos4α+sin4α)−2(cos6α+sin6α)
=3[(cos2x)2+(sin2x)2]−2[(sin2x)3+(cos2x)3]
=2[(sin2x+cos2x)(sin4x+cos4x−sin2x.cos2x)]
We know that ,a4+b4=(a2+b2)−2a2b2
anda6+b6=(a2)3+(b2)3=(a2+b2)(a4+b4−a2b2)
From the above form we can write;
=3(1−2sin2αcos2α)−2(1−3sin2αcos2α)
=3−6sin2αcos2α−2+6sin2αcos2α=1