Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The expression 3[sin4(3π2α)+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)]3\Bigg[sin^4\Bigg(\frac{3\pi}{2}-\alpha\Bigg)+sin^4(3\pi+\alpha)\Bigg]-2\Bigg[sin^6\Bigg(\frac{\pi}{2}+\alpha\Bigg)+sin^6(5\pi-\alpha)\Bigg] is equal to

A

0

B

1

C

3

D

sin4α+cos6αsin 4\alpha + cos 6 \alpha

Answer

1

Explanation

Solution

The correct answer is B:1
3[sin4(3π2α)+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)]3\Bigg[sin^4\Bigg(\frac{3\pi}{2}-\alpha\Bigg)+sin^4 (3\pi+\alpha)\Bigg]-2\Bigg[sin^6\Big(\frac{\pi}{2}+\alpha\Big)+sin^6 (5\pi-\alpha)]
=3(cos4α+sin4α)2(cos6α+sin6α)= 3 (cos^4 \alpha + sin^4 \alpha )-2 (cos^6 \alpha + sin^6 \alpha )
=3[(cos2x)2+(sin2x)2]2[(sin2x)3+(cos2x)3]=3[(cos^2x)^2+(sin^2x)^2]-2[(sin^2x)^3+(cos^2x)^3]
=2[(sin2x+cos2x)(sin4x+cos4xsin2x.cos2x)]=2[(sin^2x+cos^2x)(sin^4x+cos^4x-sin^2x.cos^2x)]
We know that ,a4+b4=(a2+b2)2a2b2a^4+b^4=(a^2+b^2)-2a^2b^2
anda6+b6=(a2)3+(b2)3=(a2+b2)(a4+b4a2b2)a^6+b^6=(a^2)^3+(b^2)^3=(a^2+b^2)(a^4+b^4-a^2b^2)
From the above form we can write;
=3(12sin2αcos2α)2(13sin2αcos2α)= 3 (1 - 2 sin^2 \alpha cos^2 \alpha ) -2 (1 - 3 sin^2 \alpha cos^2 \alpha)
=36sin2αcos2α2+6sin2αcos2α=1= 3 - 6 sin^2 \alpha cos^2 \alpha - 2 + 6 sin^2 \alpha cos^2 \alpha = 1
trignometry