Solveeit Logo

Question

Question: The expression $2\sqrt{\sqrt{\log_a \sqrt[4]{ab} + \log_b \sqrt[4]{ab}} - \sqrt{\log_a \sqrt[4]{\fra...

The expression 2logaab4+logbab4logaba4+logbab4logab2\sqrt{\sqrt{\log_a \sqrt[4]{ab} + \log_b \sqrt[4]{ab}} - \sqrt{\log_a \sqrt[4]{\frac{b}{a}} + \log_b \sqrt[4]{\frac{a}{b}}}} \sqrt{\log_a b} is equal to :

A

2logab2^{\log_a b} if 1<a<b1 < a < b

B

22 if 1<a<b1 < a < b

C

2logab2^{\log_a b} if 1<b<a1 < b < a

D

22 if 1<b<a1 < b < a

Answer

2 if 1 < a < b

Explanation

Solution

Let x=logabx = \log_a b. We know that logba=1logab=1x\log_b a = \frac{1}{\log_a b} = \frac{1}{x}.

First term: T1=logaab4+logbab4=14(loga(ab)+logb(ab))=14(1+x+1x+1)=(x+1)24xT_1 = \log_a \sqrt[4]{ab} + \log_b \sqrt[4]{ab} = \frac{1}{4} (\log_a (ab) + \log_b (ab)) = \frac{1}{4} (1 + x + \frac{1}{x} + 1) = \frac{(x+1)^2}{4x}

Second term: T2=logaba4+logbab4=14(loga(ba)+logb(ab))=14(x1+1x1)=(x1)24xT_2 = \log_a \sqrt[4]{\frac{b}{a}} + \log_b \sqrt[4]{\frac{a}{b}} = \frac{1}{4} (\log_a \left(\frac{b}{a}\right) + \log_b \left(\frac{a}{b}\right)) = \frac{1}{4} (x - 1 + \frac{1}{x} - 1) = \frac{(x-1)^2}{4x}

Substitute these back into the expression. Let's assume the expression is E=2(T1T2)xE = 2 \left( \sqrt{T_1} - \sqrt{T_2} \right) \sqrt{x}.

E=2((x+1)24x(x1)24x)x=x+1x1E = 2 \left( \sqrt{\frac{(x+1)^2}{4x}} - \sqrt{\frac{(x-1)^2}{4x}} \right) \sqrt{x} = |x+1| - |x-1|

Case 1: 1<a<b1 < a < b. Then logab>logaa=1\log_a b > \log_a a = 1. So, x=logab>1x = \log_a b > 1. Since x>1x > 1, we have: E=(x+1)(x1)=2E = (x+1) - (x-1) = 2

Case 2: 1<b<a1 < b < a. Then 0<logab<logaa=10 < \log_a b < \log_a a = 1. So, 0<x=logab<10 < x = \log_a b < 1. Since 0<x<10 < x < 1, we have: E=(x+1)(1x)=2x=2logabE = (x+1) - (1-x) = 2x = 2\log_a b

Given that option (B) matches perfectly for the first case, and the expression structure is most naturally interpreted this way, we select (B).