Question
Question: The expression $2\sqrt{\sqrt{\log_a \sqrt[4]{ab} + \log_b \sqrt[4]{ab}} - \sqrt{\log_a \sqrt[4]{\fra...
The expression 2loga4ab+logb4ab−loga4ab+logb4balogab is equal to :

2logab if 1<a<b
2 if 1<a<b
2logab if 1<b<a
2 if 1<b<a
2 if 1 < a < b
Solution
Let x=logab. We know that logba=logab1=x1.
First term: T1=loga4ab+logb4ab=41(loga(ab)+logb(ab))=41(1+x+x1+1)=4x(x+1)2
Second term: T2=loga4ab+logb4ba=41(loga(ab)+logb(ba))=41(x−1+x1−1)=4x(x−1)2
Substitute these back into the expression. Let's assume the expression is E=2(T1−T2)x.
E=2(4x(x+1)2−4x(x−1)2)x=∣x+1∣−∣x−1∣
Case 1: 1<a<b. Then logab>logaa=1. So, x=logab>1. Since x>1, we have: E=(x+1)−(x−1)=2
Case 2: 1<b<a. Then 0<logab<logaa=1. So, 0<x=logab<1. Since 0<x<1, we have: E=(x+1)−(1−x)=2x=2logab
Given that option (B) matches perfectly for the first case, and the expression structure is most naturally interpreted this way, we select (B).