Solveeit Logo

Question

Physics Question on Nuclear physics

The explosive in a hydrogen bomb is a mixture of 2H^2\text{H}, 3H^3\text{H}, and 6Li^6\text{Li} in some condensed form. The chain reaction is given by_3^6\text{Li} + _0^1\text{n} \rightarrow _2^4\text{He} + _1^3\text{H}$$$$_1^2\text{H} + _1^3\text{H} \rightarrow _2^4\text{He} + _0^1\text{n}During the explosion, the energy released is approximately ____.[Given: M(Li)=6.01690amuM(\text{Li}) = 6.01690 \, \text{amu}, M(3H)=2.01471amuM(^3\text{H}) = 2.01471 \, \text{amu}, M(24He)=4.00388amuM(_2^4\text{He}) = 4.00388 \, \text{amu}, and 1amu=931.5MeV1 \, \text{amu} = 931.5 \, \text{MeV}]

A

28.12 MeV

B

12.64 MeV

C

16.48 MeV

D

22.22 MeV

Answer

22.22 MeV

Explanation

Solution

Step 1: Total Reaction - Combining the two reactions, we get:

33Li63^{3}Li^{6} + ^{1}H^{2} \rightarrow 2$$^{2}$$He^{4}

Step 2: Calculate Energy Released (Q-value) - Using the mass-energy equivalence Q=Δmc2Q = \Delta m \cdot c^2, where Δm\Delta m is the mass defect. - Given:

M(3Li6)=6.01690amuM(^{3}Li^{6}) = 6.01690 \, \text{amu}

M(1H2)=2.01471amuM(^{1}H^{2}) = 2.01471 \, \text{amu}

M(2He4)=4.00388amuM(^{2}He^{4}) = 4.00388 \, \text{amu}

1amu=931.5MeV1 \, \text{amu} = 931.5 \, \text{MeV}

Step 3: Calculate Q

Q=[M(3Li6)+M(1H2)2×M(2He4)]×931.5MeVQ = \left[M(^{3}Li^{6}) + M(^{1}H^{2}) - 2 \times M(^{2}He^{4})\right] \times 931.5 \, \text{MeV}

Q=[6.01690+2.014712×4.00388]×931.5MeVQ = \left[6.01690 + 2.01471 - 2 \times 4.00388\right] \times 931.5 \, \text{MeV}

Q=[8.031618.00776]×931.5MeVQ = \left[8.03161 - 8.00776\right] \times 931.5 \, \text{MeV}

Q=0.02385×931.5MeVQ = 0.02385 \times 931.5 \, \text{MeV}
Q=22.22MeVQ = 22.22 \, \text{MeV}

So, the correct answer is: 22.22 MeV