Solveeit Logo

Question

Question: The expansion of \( {{\text{e}}^{\text{x}}} \) is which among the following? \( {\text{A}}{\...

The expansion of ex{{\text{e}}^{\text{x}}} is which among the following?
A. r = 0xrr B. r = 0xrr! C. r = 0xr + 1r + 1 D. r = 0xr + 1(r + 1)!  {\text{A}}{\text{. }}\sum\limits_{{\text{r = 0}}}^\infty {\dfrac{{{{\text{x}}^{\text{r}}}}}{{\text{r}}}} \\\ {\text{B}}{\text{. }}\sum\limits_{{\text{r = 0}}}^\infty {\dfrac{{{{\text{x}}^{\text{r}}}}}{{{\text{r!}}}}} \\\ {\text{C}}{\text{. }}\sum\limits_{{\text{r = 0}}}^\infty {\dfrac{{{{\text{x}}^{{\text{r + 1}}}}}}{{{\text{r + 1}}}}} \\\ {\text{D}}{\text{. }}\sum\limits_{{\text{r = 0}}}^\infty {\dfrac{{{{\text{x}}^{{\text{r + 1}}}}}}{{\left( {{\text{r + 1}}} \right)!}}} \\\

Explanation

Solution

Hint: To determine the expansion of ex{{\text{e}}^{\text{x}}} , we observe the Taylor series expansion for the given term and then evaluate which among the given options is a valid general term for the expansion. The general term should hold true for all the individual terms of the expansion.

Complete step-by-step answer:
Given Data, ex{{\text{e}}^{\text{x}}}
The Taylor series expansion of the term ex{{\text{e}}^{\text{x}}} is given as
ex{{\text{e}}^{\text{x}}} = 1+x + x22!+x33!+x44!+........1 + {\text{x + }}\dfrac{{{{\text{x}}^2}}}{{2!}} + \dfrac{{{{\text{x}}^3}}}{{3!}} + \dfrac{{{{\text{x}}^4}}}{{4!}} + ........\infty
The term r = 0xrr!\sum\limits_{{\text{r = 0}}}^\infty {\dfrac{{{{\text{x}}^{\text{r}}}}}{{{\text{r!}}}}} holds true for every term of the expansion of ex{{\text{e}}^{\text{x}}} .
For the first term of ex{{\text{e}}^{\text{x}}} , i.e. r = 0
r = 0xrr!\sum\limits_{{\text{r = 0}}}^\infty {\dfrac{{{{\text{x}}^{\text{r}}}}}{{{\text{r!}}}}} = r = 00x00!=1\sum\limits_{{\text{r = 0}}}^0 {\dfrac{{{{\text{x}}^0}}}{{{\text{0!}}}} = 1} --- (0! = 1 and any number to the power 0 = 1)
It also holds true for all the other terms of the equation.
Hence the expansion of ex{{\text{e}}^{\text{x}}} is r = 0xrr!\sum\limits_{{\text{r = 0}}}^\infty {\dfrac{{{{\text{x}}^{\text{r}}}}}{{{\text{r!}}}}} .
Option B is the correct answer.

Note – In order to solve this type of questions the key is to understand the concept of ‘e’ also known as the Napier’s constant used for the natural logarithm and it has a value of 2.71828. The Taylor series of a polynomial is a polynomial itself, ex{{\text{e}}^{\text{x}}} expansion holds because the derivative of ex{{\text{e}}^{\text{x}}} is ex{{\text{e}}^{\text{x}}} itself and e0{{\text{e}}^0} equals to 1.