Solveeit Logo

Question

Question: The expansion of \[{\sin ^8}\theta \] will be the series of A. sine multiple B. cosine multiple ...

The expansion of sin8θ{\sin ^8}\theta will be the series of
A. sine multiple
B. cosine multiple
C. both sine and cosine multiple
D. can’t be determined

Explanation

Solution

Here in this question we have determined the sin8θ{\sin ^8}\theta . On expanding the term we have to choose the options. Firstly we consider x=cosθ+isinθx = \cos \theta + i\sin \theta , 1x=cosθisinθ\dfrac{1}{x} = \cos \theta - i\sin \theta , xn=cosnθ+isinnθ{x^n} = \cos n\theta + i\sin n\theta and 1xn=cosnθisinnθ\dfrac{1}{{{x^n}}} = \cos n\theta - i\sin n\theta . Then on expanding the term raised to the power 8 and simplification we obtain the required solution for the given question.

Complete step by step answer:
As we know that x=cosθ+isinθx = \cos \theta + i\sin \theta ---- (1) and 1x=cosθisinθ\dfrac{1}{x} = \cos \theta - i\sin \theta ----(2)
On subtracting equation (1) and equation (2) we have
x1x=cosθ+isinθcosθ+isinθ\Rightarrow x - \dfrac{1}{x} = \cos \theta + i\sin \theta - \cos \theta + i\sin \theta
On simplifying we have
x1x=2isinθ\Rightarrow x - \dfrac{1}{x} = 2i\sin \theta---- (3)
On adding the equation (1) and equation (2)
x+1x=cosθ+isinθ+cosθisinθ\Rightarrow x + \dfrac{1}{x} = \cos \theta + i\sin \theta + \cos \theta - i\sin \theta
On simplifying we have
x+1x=2cosθ\Rightarrow x + \dfrac{1}{x} = 2\cos \theta---- (4)
As we know that xn=cosnθ+isinnθ{x^n} = \cos n\theta + i\sin n\theta ---- (5) and 1xn=cosnθisinnθ\dfrac{1}{{{x^n}}} = \cos n\theta - i\sin n\theta ----(6)
On subtracting equation (5) and equation (6) we have
xn1xn=cosnθ+isinnθcosnθ+isinnθ\Rightarrow {x^n} - \dfrac{1}{{{x^n}}} = \cos n\theta + i\sin n\theta - \cos n\theta + i\sin n\theta

On simplifying we have
xn1xn=2isinnθ\Rightarrow {x^n} - \dfrac{1}{{{x^n}}} = 2i\sin n\theta---- (7)
On adding the equation (5) and equation (6)
xn+1xn=cosnθ+isinnθ+cosnθisinnθ\Rightarrow {x^n} + \dfrac{1}{{{x^n}}} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta
On simplifying we have
xn+1xn=2cosnθ\Rightarrow {x^n} + \dfrac{1}{{{x^n}}} = 2\cos n\theta---- (8)
Now we have to find the expansion of sin8θ{\sin ^8}\theta .
On considering the equation (3) and raised to the power of 8.
(x1x)8=(2isinθ)8\Rightarrow {\left( {x - \dfrac{1}{x}} \right)^8} = {\left( {2i\sin \theta } \right)^8} ------(9)
The expansion (ab)8=a88a7.b+28a6.b256a5.b3+70a4.b456a3.b5+28a2.b68a.b7+b8{(a - b)^8} = {a^8} - 8{a^7}.b + 28{a^6}.{b^2} - 56{a^5}.{b^3} + 70{a^4}.{b^4} - 56{a^3}.{b^5} + 28{a^2}.{b^6} - 8a.{b^7} + {b^8}
So the equation (9) can be written as
x88x7.1x+28x6.1x256x5.1x3+70x4.1x456x3.1x5+28x2.1x68x.1x7+1x8=256sin8θ\Rightarrow {x^8} - 8{x^7}.\dfrac{1}{x} + 28{x^6}.\dfrac{1}{{{x^2}}} - 56{x^5}.\dfrac{1}{{{x^3}}} + 70{x^4}.\dfrac{1}{{{x^4}}} - 56{x^3}.\dfrac{1}{{{x^5}}} + 28{x^2}.\dfrac{1}{{{x^6}}} - 8x.\dfrac{1}{{{x^7}}} + \dfrac{1}{{{x^8}}} = 256\,{\sin ^8}\theta

On simplifying this we have
x88x6+28x456x2+70561x2+281x481x6+1x8=256sin8θ\Rightarrow {x^8} - 8{x^6} + 28{x^4} - 56{x^2} + 70 - 56\dfrac{1}{{{x^2}}} + 28\dfrac{1}{{{x^4}}} - 8\dfrac{1}{{{x^6}}} + \dfrac{1}{{{x^8}}} = 256\,{\sin ^8}\theta
Taking the common terms in the LHS we have
(x8+1x8)8(x6+1x6)+28(x4+1x4)56(x2+1x2)+70=256sin8θ\Rightarrow \left( {{x^8} + \dfrac{1}{{{x^8}}}} \right) - 8\left( {{x^6} + \dfrac{1}{{{x^6}}}} \right) + 28\left( {{x^4} + \dfrac{1}{{{x^4}}}} \right) - 56\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + 70 = 256\,{\sin ^8}\theta
On considering the equation (8), the term is written as
(2cos8θ)8(2cos6θ)+28(2cos4θ)56(2cos2θ)+70=256sin8θ\Rightarrow \left( {2\cos 8\theta } \right) - 8\left( {2\cos 6\theta } \right) + 28\left( {2\cos 4\theta } \right) - 56\left( {2\cos 2\theta } \right) + 70 = 256\,{\sin ^8}\theta
On simplifying we have
2cos8θ16cos6θ+56cos4θ112cos2θ+70=256sin8θ\Rightarrow 2\cos 8\theta - 16\cos 6\theta + 56\cos 4\theta - 112\cos 2\theta + 70 = 256\,{\sin ^8}\theta

On dividing the above term by 2 we get
cos8θ8cos6θ+28cos4θ56cos2θ+35=128sin8θ\Rightarrow \cos 8\theta - 8\cos 6\theta + 28\cos 4\theta - 56\cos 2\theta + 35 = 128\,{\sin ^8}\theta
This can be written as
sin8θ=1128[cos8θ8cos6θ+28cos4θ56cos2θ+35]\Rightarrow {\sin ^8}\theta = \dfrac{1}{{128}}\left[ {\cos 8\theta - 8\cos 6\theta + 28\cos 4\theta - 56\cos 2\theta + 35} \right]
As we know that the

n \\\ 2 \end{array}} \right){\cos ^{n - 2}}\theta \,{\sin ^2}\theta + \left( {\begin{array}{*{20}{c}} n \\\ 4 \end{array}} \right){\cos ^{n - 4}}\theta \,{\sin ^4}\theta \pm ...$$, on considering this formula the $${\sin ^8}\theta $$ will be the series of sine and cosine. **Therefore the correct answer is option C.** **Note:** We should note that pascal’s triangle is helpful only when the value of $n$ is small in the equation ${(a - b)^n}$. If the value is large then it is very tedious to draw the triangle until we reach $n$. Between the two terms we have negative so we will have alternate signs in the expansion.