Solveeit Logo

Question

Question: The expansion \(\dfrac{{\sin \dfrac{{7\pi }}{{24}} + \sin \dfrac{{5\pi }}{{24}} + \sin \dfrac{{9\pi ...

The expansion sin7π24+sin5π24+sin9π24+sin3π24cos7π24+cos5π24+cos9π24+cos3π24\dfrac{{\sin \dfrac{{7\pi }}{{24}} + \sin \dfrac{{5\pi }}{{24}} + \sin \dfrac{{9\pi }}{{24}} + \sin \dfrac{{3\pi }}{{24}}}}{{\cos \dfrac{{7\pi }}{{24}} + \cos \dfrac{{5\pi }}{{24}} + \cos \dfrac{{9\pi }}{{24}} + \cos \dfrac{{3\pi }}{{24}}}}
A. 1
B. 232 - \sqrt 3
C. 21\sqrt 2 - 1
D. 13\dfrac{1}{{\sqrt 3 }}

Explanation

Solution

We will first simplify the given expression. Apply the formulasinA+sinB=2sin(x+y2)cos(xy2)\sin A + \sin B = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) in the numerator and cosA+cosB=2cos(x+y2)cos(xy2)\cos A + \cos B = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) in the denominator. Take the common terms out and then cancel the terms which are common in numerator and denominator. Substitute the known values to get the required answer.

Complete step-by-step answer:
We have to find the value of sin7π24+sin5π24+sin9π24+sin3π24cos7π24+cos5π24+cos9π24+cos3π24\dfrac{{\sin \dfrac{{7\pi }}{{24}} + \sin \dfrac{{5\pi }}{{24}} + \sin \dfrac{{9\pi }}{{24}} + \sin \dfrac{{3\pi }}{{24}}}}{{\cos \dfrac{{7\pi }}{{24}} + \cos \dfrac{{5\pi }}{{24}} + \cos \dfrac{{9\pi }}{{24}} + \cos \dfrac{{3\pi }}{{24}}}}
We will apply the formula sinA+sinB=2sin(x+y2)cos(=xy2)\sin A + \sin B = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( ={\dfrac{{x - y}}{2}} \right) and cosA+cosB=2cos(x+y2)cos(xy2)\cos A + \cos B = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)
=2sin(7π24+5π24)cos(7π245π24)+2sin(9π24+3π24)cos(9π243π24)2cos(7π24+5π24)cos(7π245π24)+2cos(9π24+3π24)cos(9π243π24)\dfrac{{2\sin \left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right)\cos \left( {\dfrac{{7\pi }}{{24}} - \dfrac{{5\pi }}{{24}}} \right) + 2\sin \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right)\cos \left( {\dfrac{{9\pi }}{{24}} - \dfrac{{3\pi }}{{24}}} \right)}}{{2\cos \left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right)\cos \left( {\dfrac{{7\pi }}{{24}} - \dfrac{{5\pi }}{{24}}} \right) + 2\cos \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right)\cos \left( {\dfrac{{9\pi }}{{24}} - \dfrac{{3\pi }}{{24}}} \right)}}
We will simplify the brackets.
=2sin(π2)cos(π12)+2sin(π2)cos(π4)2cos(π2)cos(π12)+2cos(π2)cos(π4)\dfrac{{2\sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{{12}}} \right) + 2\sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right)}}{{2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{{12}}} \right) + 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right)}}
We will now take 2sin(π2)2\sin \left( {\dfrac{\pi }{2}} \right) common from numerator and similarly, we can take 2cos(π2)2\cos \left( {\dfrac{\pi }{2}} \right) common from denominator.
=2sin(π2)(cos(π12)+cos(π4))2cos(π2)(cos(π12)+cos(π4)) =sin(π2)cos(π2)  = \dfrac{{2\sin \left( {\dfrac{\pi }{2}} \right)\left( {\cos \left( {\dfrac{\pi }{{12}}} \right) + \cos \left( {\dfrac{\pi }{4}} \right)} \right)}}{{2\cos \left( {\dfrac{\pi }{2}} \right)\left( {\cos \left( {\dfrac{\pi }{{12}}} \right) + \cos \left( {\dfrac{\pi }{4}} \right)} \right)}} \\\ = \dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\cos \left( {\dfrac{\pi }{2}} \right)}} \\\
Now, we know that sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta
Therefore, the above expression can be simplified as,
sin(π2)cos(π2)=tanπ2\dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\cos \left( {\dfrac{\pi }{2}} \right)}} = \tan \dfrac{\pi }{2}
And the value of tanπ2\tan \dfrac{\pi }{2} is not defined.
Hence, the value of the expression is not defined.

Note: The best way to solve these types of questions is to simplify the given expression using the trigonometric identities. Here, while applying the formula of sum of trigonometric ratios, we have taken the term together such that their sum is equal. For example, (7π24+5π24)=(9π24+3π24)=π2\left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right) = \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right) = \dfrac{\pi }{2}
This helps to reduce calculations. Also, do not try to find the value of each term as it will be very time consuming.