Solveeit Logo

Question

Mathematics Question on Determinants

The existence of the unique solution of the system of equations x+y+z=βx + y + z = \beta 5xy+az=105x - y + az = 10 2x+3yz=62x + 3y - z = 6 depends on

A

α\alpha only

B

β\beta only

C

α\alpha and β\beta both

D

neither β\beta nor α\alpha

Answer

α\alpha only

Explanation

Solution

Given, system of equation is x+y+z=βx + y + z= \beta 5xy+αz=105x - y + \alpha z = 10 and 2x+3yz=62x + 3y - z =6 For unique solution 111 51α 2310\left|\begin{matrix}1&1&1\\\ 5&-1&\alpha\\\ 2&3&-1\end{matrix}\right|\ne0 1(13α)1(52α)+1(15+2)0\Rightarrow 1\left(1-3\alpha\right)-1\left(-5-2\alpha\right)+1\left(15+2\right)\ne0 13α+5+2α+170\Rightarrow 1-3\alpha+5+2\alpha+17\ne0 α+230\Rightarrow -\alpha+23 \ne0 α23\Rightarrow \alpha \ne23 Hence, for the existence of the unique solutionthe system of equations depend on α\alpha only