Solveeit Logo

Question

Question: The exhaustive range of values of a such that the angle between the pair of tangents drawn from (a, ...

The exhaustive range of values of a such that the angle between the pair of tangents drawn from (a, a) to the circle x2 + y2 – 2x – 2y – 6 = 0 lies in the range (π3,π)\left( \frac { \pi } { 3 } , \pi \right), is –

A

(1, )

B

(–5, – 3) Č (3, 5)

C

(– , – 22\sqrt { 2 }) Č (22\sqrt { 2 }, )

D

(– 3, – 1) Č (3, 5)

Answer

(– 3, – 1) Č (3, 5)

Explanation

Solution

The centre of the given circle is (1, 1) and

radius = 22\sqrt { 2 }. Point (a, a) must lie outside the circle,

so 2a2 – 4a – 6 > 0

Ž a < – 1 or a > 3 ..........(i)

Now, tan 222a24a6\frac { 2 \sqrt { 2 } } { \sqrt { 2 a ^ { 2 } - 4 a - 6 } }

Since, π6\frac { \pi } { 6 } < π2\frac { \pi } { 2 }

\ <23< 2 \sqrt { 3 }

\ a2 – 2a – 15 < 0

Ž –3 < a < 5 .........(ii)

\ a Ī (– 3, –1 ) Č (3, 5).

[ from Eqs. (i) and (ii) ]