Solveeit Logo

Question

Question: The exact value of \(\cos \dfrac{2\pi }{28}\csc \dfrac{3\pi }{28}+\cos \dfrac{6\pi }{28}\csc \dfrac{...

The exact value of cos2π28csc3π28+cos6π28csc9π28+cos18π28csc27π28\cos \dfrac{2\pi }{28}\csc \dfrac{3\pi }{28}+\cos \dfrac{6\pi }{28}\csc \dfrac{9\pi }{28}+\cos \dfrac{18\pi }{28}\csc \dfrac{27\pi }{28} is?

Explanation

Solution

Hint:For solving this question we will assume π28=θ\dfrac{\pi }{28}=\theta and simply the given term with the help of trigonometric formulas like 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right) , sin(π2θ)=cosθ\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta , 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) , sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta . After that, we will try to analyse the result and try to get some numerical value of the given term with proper use of a suitable formula.

Complete step-by-step answer:
Given:
We have to find the exact value of cos2π28csc3π28+cos6π28csc9π28+cos18π28csc27π28\cos \dfrac{2\pi }{28}\csc \dfrac{3\pi }{28}+\cos \dfrac{6\pi }{28}\csc \dfrac{9\pi }{28}+\cos \dfrac{18\pi }{28}\csc \dfrac{27\pi }{28} .
Now, before we proceed we should know the following formulas:
sin(π2θ)=cosθ.................(1) cos(π2+θ)=sinθ..............(2) sin(πθ)=sinθ...................(3) 2cosAcosB=cos(A+B)+cos(AB).....................(4) 2sinAsinB=cos(AB)cos(A+B).......................(5) 2sinAcosB=sin(A+B)+sin(AB)........................(6) \begin{aligned} & \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta .................\left( 1 \right) \\\ & \cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta ..............\left( 2 \right) \\\ & \sin \left( \pi -\theta \right)=\sin \theta ...................\left( 3 \right) \\\ & 2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right).....................\left( 4 \right) \\\ & 2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right).......................\left( 5 \right) \\\ & 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)........................\left( 6 \right) \\\ \end{aligned}
Now, let π28=θ\dfrac{\pi }{28}=\theta . Then,
cos2π28csc3π28+cos6π28csc9π28+cos18π28csc27π28 cos2θcsc3θ+cos6θcsc9θ+cos18θcsc27θ \begin{aligned} & \cos \dfrac{2\pi }{28}\csc \dfrac{3\pi }{28}+\cos \dfrac{6\pi }{28}\csc \dfrac{9\pi }{28}+\cos \dfrac{18\pi }{28}\csc \dfrac{27\pi }{28} \\\ & \Rightarrow \cos 2\theta \csc 3\theta +\cos 6\theta \csc 9\theta +\cos 18\theta \csc 27\theta \\\ \end{aligned}
Now, we will simplify cos2θcsc3θ+cos6θcsc9θ+cos18θcsc27θ\cos 2\theta \csc 3\theta +\cos 6\theta \csc 9\theta +\cos 18\theta \csc 27\theta and as we know that cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } . Then,
cos2θcsc3θ+cos6θcsc9θ+cos18θcsc27θ cos2θsin3θ+cos6θsin9θ+cos18θsin27θ cos2θsin3θ+cos6θsin(14θ5θ)+cos(14θ+4θ)sin(28θθ) \begin{aligned} & \cos 2\theta \csc 3\theta +\cos 6\theta \csc 9\theta +\cos 18\theta \csc 27\theta \\\ & \Rightarrow \dfrac{\cos 2\theta }{\sin 3\theta }+\dfrac{\cos 6\theta }{\sin 9\theta }+\dfrac{\cos 18\theta }{\sin 27\theta } \\\ & \Rightarrow \dfrac{\cos 2\theta }{\sin 3\theta }+\dfrac{\cos 6\theta }{\sin \left( 14\theta -5\theta \right)}+\dfrac{\cos \left( 14\theta +4\theta \right)}{\sin \left( 28\theta -\theta \right)} \\\ \end{aligned}
Now, as per our assumption π28=θ\dfrac{\pi }{28}=\theta we can write 14θ=π214\theta=\dfrac{\pi}{2} . Then,
cos2θsin3θ+cos6θsin(14θ5θ)+cos(14θ+4θ)sin(28θθ) cos2θsin3θ+cos6θsin(π25θ)+cos(π2+4θ)sin(πθ) \begin{aligned} & \dfrac{\cos 2\theta }{\sin 3\theta }+\dfrac{\cos 6\theta }{\sin \left( 14\theta -5\theta \right)}+\dfrac{\cos \left( 14\theta +4\theta \right)}{\sin \left( 28\theta -\theta \right)} \\\ & \Rightarrow \dfrac{\cos 2\theta }{\sin 3\theta }+\dfrac{\cos 6\theta }{\sin \left( \dfrac{\pi }{2}-5\theta \right)}+\dfrac{\cos \left( \dfrac{\pi }{2}+4\theta \right)}{\sin \left( \pi -\theta \right)} \\\ \end{aligned}
Now, using the formula from the equation (1) to write sin(π25θ)=cos5θ\sin \left( \dfrac{\pi }{2}-5\theta \right)=\cos 5\theta , formula from the equation (2) to write cos(π2+4θ)=sin4θ\cos \left( \dfrac{\pi }{2}+4\theta \right)=-\sin 4\theta and formula from the equation (3) to write sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta in the above. Then,
cos2θsin3θ+cos6θsin(π25θ)+cos(π2+4θ)sin(πθ) cos2θsin3θ+cos6θcos5θsin4θsinθ sinθcos2θcos5θ+cos6θsin3θsinθcos5θsin3θsin4θsin3θcos5θsinθ=ND......................(7) \begin{aligned} & \dfrac{\cos 2\theta }{\sin 3\theta }+\dfrac{\cos 6\theta }{\sin \left( \dfrac{\pi }{2}-5\theta \right)}+\dfrac{\cos \left( \dfrac{\pi }{2}+4\theta \right)}{\sin \left( \pi -\theta \right)} \\\ & \Rightarrow \dfrac{\cos 2\theta }{\sin 3\theta }+\dfrac{\cos 6\theta }{\cos 5\theta }-\dfrac{\sin 4\theta }{\sin \theta } \\\ & \Rightarrow \dfrac{\sin \theta \cos 2\theta \cos 5\theta +\cos 6\theta \sin 3\theta \sin \theta -\cos 5\theta \sin 3\theta \sin 4\theta }{\sin 3\theta \cos 5\theta \sin \theta }=\dfrac{N}{D}......................\left( 7 \right) \\\ \end{aligned}
Now, we will simplify the numerator NN . Then,
N=sinθcos2θcos5θ+cos6θsin3θsinθcos5θsin3θsin4θ 2N=2sinθcos2θcos5θ+2cos6θsin3θsinθ2cos5θsin4θsin3θ 2N=sinθ(2cos2θcos5θ)+cos6θ(2sin3θsinθ)cos5θ(2sin4θsin3θ) \begin{aligned} & N=\sin \theta \cos 2\theta \cos 5\theta +\cos 6\theta \sin 3\theta \sin \theta -\cos 5\theta \sin 3\theta \sin 4\theta \\\ & \Rightarrow 2N=2\sin \theta \cos 2\theta \cos 5\theta +2\cos 6\theta \sin 3\theta \sin \theta -2\cos 5\theta \sin 4\theta \sin 3\theta \\\ & \Rightarrow 2N=\sin \theta \left( 2\cos 2\theta \cos 5\theta \right)+\cos 6\theta \left( 2\sin 3\theta \sin \theta \right)-\cos 5\theta \left( 2\sin 4\theta \sin 3\theta \right) \\\ \end{aligned}
Now, use the formula form the equation (4) to write 2cos2θcos5θ=cos7θ+cos3θ2\cos 2\theta \cos 5\theta =\cos 7\theta +\cos 3\theta and formula from the equation (5) to write 2sin3θsinθ=cos2θcos4θ2\sin 3\theta \sin \theta =\cos 2\theta -\cos 4\theta and 2sin4θsin3θ=cosθcos7θ2\sin 4\theta \sin 3\theta =\cos \theta -\cos 7\theta in the above equation. Then,
2N=sinθ(2cos2θcos5θ)+cos6θ(2sin3θsinθ)cos5θ(2sin4θsin3θ) 2N=sinθ(cos(5θ+2θ)+cos(5θ2θ))+cos6θ(cos(3θθ)cos(3θ+θ)) cos5θ(cos(4θ3θ)cos(4θ+3θ)) 2N=sinθ(cos7θ+cos3θ)+cos6θ(cos2θcos4θ)cos5θ(cosθcos7θ) 2N=sinθcos7θ+sinθcos3θ+cos6θcos2θcos6θcos4θcos5θcosθ+cos5θcos7θ 4N=2sinθcos7θ+2sinθcos3θ+2cos6θcos2θ2cos6θcos4θ2cos5θcosθ+2cos7θcos5θ \begin{aligned} & 2N=\sin \theta \left( 2\cos 2\theta \cos 5\theta \right)+\cos 6\theta \left( 2\sin 3\theta \sin \theta \right)-\cos 5\theta \left( 2\sin 4\theta \sin 3\theta \right) \\\ & \Rightarrow 2N=\sin \theta \left( \cos \left( 5\theta +2\theta \right)+\cos \left( 5\theta -2\theta \right) \right)+\cos 6\theta \left( \cos \left( 3\theta -\theta \right)-\cos \left( 3\theta +\theta \right) \right) \\\ & -\cos 5\theta \left( \cos \left( 4\theta -3\theta \right)-\cos \left( 4\theta +3\theta \right) \right) \\\ & \Rightarrow 2N=\sin \theta \left( \cos 7\theta +\cos 3\theta \right)+\cos 6\theta \left( \cos 2\theta -\cos 4\theta \right)-\cos 5\theta \left( \cos \theta -\cos 7\theta \right) \\\ & \Rightarrow 2N=\sin \theta \cos 7\theta +\sin \theta \cos 3\theta +\cos 6\theta \cos 2\theta -\cos 6\theta \cos 4\theta -\cos 5\theta \cos \theta +\cos 5\theta \cos 7\theta \\\ & \Rightarrow 4N=2\sin \theta \cos 7\theta +2\sin \theta \cos 3\theta +2\cos 6\theta \cos 2\theta -2\cos 6\theta \cos 4\theta -2\cos 5\theta \cos \theta +2\cos 7\theta \cos 5\theta \\\ \end{aligned}
Now, use the formula from the equation (6) to write 2sinθcos7θ=sin8θsin6θ2\sin \theta \cos 7\theta =\sin 8\theta -\sin 6\theta , 2sinθcos3θ=sin4θsin2θ2\sin \theta \cos 3\theta =\sin 4\theta -\sin 2\theta and equation (4) to write 2cos6θcos2θ=cos8θ+cos4θ2\cos 6\theta \cos 2\theta =\cos 8\theta +\cos 4\theta , 2cos6θcos4θ=cos10θ+cos2θ2\cos 6\theta \cos 4\theta =\cos 10\theta +\cos 2\theta , 2cos5θcosθ=cos6θ+cos4θ2\cos 5\theta \cos \theta =\cos 6\theta +\cos 4\theta and 2cos7θcos5θ=cos12θ+cos2θ2\cos 7\theta \cos 5\theta =\cos 12\theta +\cos 2\theta in the above equation. Then,
4N=2sinθcos7θ+2sinθcos3θ+2cos6θcos2θ2cos6θcos4θ2cos5θcosθ+2cos7θcos5θ 4N=sin(θ+7θ)+sin(θ7θ)+sin(θ+3θ)+sin(θ3θ)+cos(6θ+2θ)+cos(6θ2θ) cos(6θ+4θ)cos(6θ4θ)cos(5θ+θ)cos(5θθ)+cos(7θ+5θ)+cos(7θ5θ) 4N=sin8θ+sin(6θ)+sin4θ+sin(2θ)+cos8θ+cos4θcos10θcos2θcos6θcos4θ +cos12θ+cos2θ \begin{aligned} & 4N=2\sin \theta \cos 7\theta +2\sin \theta \cos 3\theta +2\cos 6\theta \cos 2\theta -2\cos 6\theta \cos 4\theta -2\cos 5\theta \cos \theta +2\cos 7\theta \cos 5\theta \\\ & \Rightarrow 4N=\sin \left( \theta +7\theta \right)+\sin \left( \theta -7\theta \right)+\sin \left( \theta +3\theta \right)+\sin \left( \theta -3\theta \right)+\cos \left( 6\theta +2\theta \right)+\cos \left( 6\theta -2\theta \right) \\\ & -\cos \left( 6\theta +4\theta \right)-\cos \left( 6\theta -4\theta \right)-\cos \left( 5\theta +\theta \right)-\cos \left( 5\theta -\theta \right)+\cos \left( 7\theta +5\theta \right)+\cos \left( 7\theta -5\theta \right) \\\ & \Rightarrow 4N=\sin 8\theta +\sin \left( -6\theta \right)+\sin 4\theta +\sin \left( -2\theta \right)+\cos 8\theta +\cos 4\theta -\cos 10\theta -\cos 2\theta -\cos 6\theta -\cos 4\theta \\\ & +\cos 12\theta +\cos 2\theta \\\ \end{aligned}
Now, as we know that sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta . Then,
4N=sin8θ+sin(6θ)+sin4θ+sin(2θ)+cos8θ+cos4θcos10θcos2θcos6θcos4θ +cos12θ+cos2θ 4N=sin8θsin6θ+sin4θsin2θ+cos8θ+cos4θcos10θcos2θcos6θcos4θ +cos12θ+cos2θ 4N=(sin8θcos6θ)+(cos8θsin6θ)+(sin4θcos10θ)+(cos12θsin2θ)+(cos4θcos4θ) +(cos2θcos2θ) 4N=(sin(14θ6θ)cos6θ)+(cos8θsin(14θ8θ))+(sin(14θ10θ)cos10θ) +(cos12θsin(14θ12θ)) \begin{aligned} & 4N=\sin 8\theta +\sin \left( -6\theta \right)+\sin 4\theta +\sin \left( -2\theta \right)+\cos 8\theta +\cos 4\theta -\cos 10\theta -\cos 2\theta -\cos 6\theta -\cos 4\theta \\\ & +\cos 12\theta +\cos 2\theta \\\ & \Rightarrow 4N=\sin 8\theta -\sin 6\theta +\sin 4\theta -\sin 2\theta +\cos 8\theta +\cos 4\theta -\cos 10\theta -\cos 2\theta -\cos 6\theta -\cos 4\theta \\\ & +\cos 12\theta +\cos 2\theta \\\ & \Rightarrow 4N=\left( \sin 8\theta -\cos 6\theta \right)+\left( \cos 8\theta -\sin 6\theta \right)+\left( \sin 4\theta -\cos 10\theta \right)+\left( \cos 12\theta -\sin 2\theta \right)+\left( \cos 4\theta -\cos 4\theta \right) \\\ & +\left( \cos 2\theta -\cos 2\theta \right) \\\ & \Rightarrow 4N=\left( \sin \left( 14\theta -6\theta \right)-\cos 6\theta \right)+\left( \cos 8\theta -\sin \left( 14\theta -8\theta \right) \right)+\left( \sin \left( 14\theta -10\theta \right)-\cos 10\theta \right) \\\ & +\left( \cos 12\theta -\sin \left( 14\theta -12\theta \right) \right) \\\ \end{aligned}
Now, as per our assumption π28=θ\dfrac{\pi }{28}=\theta . Then,
4N=(sin(14θ6θ)cos6θ)+(cos8θsin(14θ8θ))+(sin(14θ10θ)cos10θ) +(cos12θsin(14θ12θ)) 4N=(sin(π26θ)cos6θ)+(cos8θsin(π28θ))+(sin(π210θ)cos10θ) +(cos12θsin(π212θ)) \begin{aligned} & 4N=\left( \sin \left( 14\theta -6\theta \right)-\cos 6\theta \right)+\left( \cos 8\theta -\sin \left( 14\theta -8\theta \right) \right)+\left( \sin \left( 14\theta -10\theta \right)-\cos 10\theta \right) \\\ & +\left( \cos 12\theta -\sin \left( 14\theta -12\theta \right) \right) \\\ & \Rightarrow 4N=\left( \sin \left( \dfrac{\pi }{2}-6\theta \right)-\cos 6\theta \right)+\left( \cos 8\theta -\sin \left( \dfrac{\pi }{2}-8\theta \right) \right)+\left( \sin \left( \dfrac{\pi }{2}-10\theta \right)-\cos 10\theta \right) \\\ & +\left( \cos 12\theta -\sin \left( \dfrac{\pi }{2}-12\theta \right) \right) \\\ \end{aligned}
Now, using the formula from the equation (1) to write sin(π26θ)=cos6θ\sin \left( \dfrac{\pi }{2}-6\theta \right)=\cos 6\theta , sin(π28θ)=cos8θ\sin \left( \dfrac{\pi }{2}-8\theta \right)=\cos 8\theta , sin(π210θ)=cos10θ\sin \left( \dfrac{\pi }{2}-10\theta \right)=\cos 10\theta and sin(π212θ)=cos12θ\sin \left( \dfrac{\pi }{2}-12\theta \right)=\cos 12\theta in the above equation. Then,
4N=(sin(π26θ)cos6θ)+(cos8θsin(π28θ))+(sin(π210θ)cos10θ) +(cos12θsin(π212θ)) 4N=(cos6θcos6θ)+(cos8θsin8θ)+(cos10θcos10θ)+(cos12θcos12θ) 4N=0 N=0 \begin{aligned} & 4N=\left( \sin \left( \dfrac{\pi }{2}-6\theta \right)-\cos 6\theta \right)+\left( \cos 8\theta -\sin \left( \dfrac{\pi }{2}-8\theta \right) \right)+\left( \sin \left( \dfrac{\pi }{2}-10\theta \right)-\cos 10\theta \right) \\\ & +\left( \cos 12\theta -\sin \left( \dfrac{\pi }{2}-12\theta \right) \right) \\\ & \Rightarrow 4N=\left( \cos 6\theta -\cos 6\theta \right)+\left( \cos 8\theta -\sin 8\theta \right)+\left( \cos 10\theta -\cos 10\theta \right)+\left( \cos 12\theta -\cos 12\theta \right) \\\ & \Rightarrow 4N=0 \\\ & \Rightarrow N=0 \\\ \end{aligned}
Now, put N=0N=0 from the above equation in the equation (7). Then,
sinθcos2θcos5θ+cos6θsin3θsinθcos5θsin3θsin4θsin3θcos5θsinθ=ND sinθcos2θcos5θ+cos6θsin3θsinθcos5θsin3θsin4θsin3θcos5θsinθ=0 \begin{aligned} & \dfrac{\sin \theta \cos 2\theta \cos 5\theta +\cos 6\theta \sin 3\theta \sin \theta -\cos 5\theta \sin 3\theta \sin 4\theta }{\sin 3\theta \cos 5\theta \sin \theta }=\dfrac{N}{D} \\\ & \Rightarrow \dfrac{\sin \theta \cos 2\theta \cos 5\theta +\cos 6\theta \sin 3\theta \sin \theta -\cos 5\theta \sin 3\theta \sin 4\theta }{\sin 3\theta \cos 5\theta \sin \theta }=0 \\\ \end{aligned}
Now, as we have simplified the given term into sinθcos2θcos5θ+cos6θsin3θsinθcos5θsin3θsin4θsin3θcos5θsinθ\dfrac{\sin \theta \cos 2\theta \cos 5\theta +\cos 6\theta \sin 3\theta \sin \theta -\cos 5\theta \sin 3\theta \sin 4\theta }{\sin 3\theta \cos 5\theta \sin \theta } and its value is zero. Then,
cos2π28csc3π28+cos6π28csc9π28+cos18π28csc27π28=0\cos \dfrac{2\pi }{28}\csc \dfrac{3\pi }{28}+\cos \dfrac{6\pi }{28}\csc \dfrac{9\pi }{28}+\cos \dfrac{18\pi }{28}\csc \dfrac{27\pi }{28}=0
Thus, the exact value of the given term will be 0.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer. And we should proceed in a stepwise manner and use each formula with proper values and make assumptions like θ=π28\theta =\dfrac{\pi }{28} for smooth calculation. Moreover, we should avoid calculation mistakes while solving to get the correct answer.Students should remember important trigonometric identities ,formulas and standard trigonometric angles for solving these types of questions.