Question
Question: The exact value of \(\cos \dfrac{2\pi }{28}\csc \dfrac{3\pi }{28}+\cos \dfrac{6\pi }{28}\csc \dfrac{...
The exact value of cos282πcsc283π+cos286πcsc289π+cos2818πcsc2827π is?
Solution
Hint:For solving this question we will assume 28π=θ and simply the given term with the help of trigonometric formulas like 2cosAcosB=cos(A+B)+cos(A−B) , sin(2π−θ)=cosθ , 2sinAcosB=sin(A+B)+sin(A−B) , sin(π−θ)=sinθ . After that, we will try to analyse the result and try to get some numerical value of the given term with proper use of a suitable formula.
Complete step-by-step answer:
Given:
We have to find the exact value of cos282πcsc283π+cos286πcsc289π+cos2818πcsc2827π .
Now, before we proceed we should know the following formulas:
sin(2π−θ)=cosθ.................(1)cos(2π+θ)=−sinθ..............(2)sin(π−θ)=sinθ...................(3)2cosAcosB=cos(A+B)+cos(A−B).....................(4)2sinAsinB=cos(A−B)−cos(A+B).......................(5)2sinAcosB=sin(A+B)+sin(A−B)........................(6)
Now, let 28π=θ . Then,
cos282πcsc283π+cos286πcsc289π+cos2818πcsc2827π⇒cos2θcsc3θ+cos6θcsc9θ+cos18θcsc27θ
Now, we will simplify cos2θcsc3θ+cos6θcsc9θ+cos18θcsc27θ and as we know that cscθ=sinθ1 . Then,
cos2θcsc3θ+cos6θcsc9θ+cos18θcsc27θ⇒sin3θcos2θ+sin9θcos6θ+sin27θcos18θ⇒sin3θcos2θ+sin(14θ−5θ)cos6θ+sin(28θ−θ)cos(14θ+4θ)
Now, as per our assumption 28π=θ we can write 14θ=2π . Then,
sin3θcos2θ+sin(14θ−5θ)cos6θ+sin(28θ−θ)cos(14θ+4θ)⇒sin3θcos2θ+sin(2π−5θ)cos6θ+sin(π−θ)cos(2π+4θ)
Now, using the formula from the equation (1) to write sin(2π−5θ)=cos5θ , formula from the equation (2) to write cos(2π+4θ)=−sin4θ and formula from the equation (3) to write sin(π−θ)=sinθ in the above. Then,
sin3θcos2θ+sin(2π−5θ)cos6θ+sin(π−θ)cos(2π+4θ)⇒sin3θcos2θ+cos5θcos6θ−sinθsin4θ⇒sin3θcos5θsinθsinθcos2θcos5θ+cos6θsin3θsinθ−cos5θsin3θsin4θ=DN......................(7)
Now, we will simplify the numerator N . Then,
N=sinθcos2θcos5θ+cos6θsin3θsinθ−cos5θsin3θsin4θ⇒2N=2sinθcos2θcos5θ+2cos6θsin3θsinθ−2cos5θsin4θsin3θ⇒2N=sinθ(2cos2θcos5θ)+cos6θ(2sin3θsinθ)−cos5θ(2sin4θsin3θ)
Now, use the formula form the equation (4) to write 2cos2θcos5θ=cos7θ+cos3θ and formula from the equation (5) to write 2sin3θsinθ=cos2θ−cos4θ and 2sin4θsin3θ=cosθ−cos7θ in the above equation. Then,
2N=sinθ(2cos2θcos5θ)+cos6θ(2sin3θsinθ)−cos5θ(2sin4θsin3θ)⇒2N=sinθ(cos(5θ+2θ)+cos(5θ−2θ))+cos6θ(cos(3θ−θ)−cos(3θ+θ))−cos5θ(cos(4θ−3θ)−cos(4θ+3θ))⇒2N=sinθ(cos7θ+cos3θ)+cos6θ(cos2θ−cos4θ)−cos5θ(cosθ−cos7θ)⇒2N=sinθcos7θ+sinθcos3θ+cos6θcos2θ−cos6θcos4θ−cos5θcosθ+cos5θcos7θ⇒4N=2sinθcos7θ+2sinθcos3θ+2cos6θcos2θ−2cos6θcos4θ−2cos5θcosθ+2cos7θcos5θ
Now, use the formula from the equation (6) to write 2sinθcos7θ=sin8θ−sin6θ , 2sinθcos3θ=sin4θ−sin2θ and equation (4) to write 2cos6θcos2θ=cos8θ+cos4θ , 2cos6θcos4θ=cos10θ+cos2θ , 2cos5θcosθ=cos6θ+cos4θ and 2cos7θcos5θ=cos12θ+cos2θ in the above equation. Then,
4N=2sinθcos7θ+2sinθcos3θ+2cos6θcos2θ−2cos6θcos4θ−2cos5θcosθ+2cos7θcos5θ⇒4N=sin(θ+7θ)+sin(θ−7θ)+sin(θ+3θ)+sin(θ−3θ)+cos(6θ+2θ)+cos(6θ−2θ)−cos(6θ+4θ)−cos(6θ−4θ)−cos(5θ+θ)−cos(5θ−θ)+cos(7θ+5θ)+cos(7θ−5θ)⇒4N=sin8θ+sin(−6θ)+sin4θ+sin(−2θ)+cos8θ+cos4θ−cos10θ−cos2θ−cos6θ−cos4θ+cos12θ+cos2θ
Now, as we know that sin(−θ)=−sinθ . Then,
4N=sin8θ+sin(−6θ)+sin4θ+sin(−2θ)+cos8θ+cos4θ−cos10θ−cos2θ−cos6θ−cos4θ+cos12θ+cos2θ⇒4N=sin8θ−sin6θ+sin4θ−sin2θ+cos8θ+cos4θ−cos10θ−cos2θ−cos6θ−cos4θ+cos12θ+cos2θ⇒4N=(sin8θ−cos6θ)+(cos8θ−sin6θ)+(sin4θ−cos10θ)+(cos12θ−sin2θ)+(cos4θ−cos4θ)+(cos2θ−cos2θ)⇒4N=(sin(14θ−6θ)−cos6θ)+(cos8θ−sin(14θ−8θ))+(sin(14θ−10θ)−cos10θ)+(cos12θ−sin(14θ−12θ))
Now, as per our assumption 28π=θ . Then,
4N=(sin(14θ−6θ)−cos6θ)+(cos8θ−sin(14θ−8θ))+(sin(14θ−10θ)−cos10θ)+(cos12θ−sin(14θ−12θ))⇒4N=(sin(2π−6θ)−cos6θ)+(cos8θ−sin(2π−8θ))+(sin(2π−10θ)−cos10θ)+(cos12θ−sin(2π−12θ))
Now, using the formula from the equation (1) to write sin(2π−6θ)=cos6θ , sin(2π−8θ)=cos8θ , sin(2π−10θ)=cos10θ and sin(2π−12θ)=cos12θ in the above equation. Then,
4N=(sin(2π−6θ)−cos6θ)+(cos8θ−sin(2π−8θ))+(sin(2π−10θ)−cos10θ)+(cos12θ−sin(2π−12θ))⇒4N=(cos6θ−cos6θ)+(cos8θ−sin8θ)+(cos10θ−cos10θ)+(cos12θ−cos12θ)⇒4N=0⇒N=0
Now, put N=0 from the above equation in the equation (7). Then,
sin3θcos5θsinθsinθcos2θcos5θ+cos6θsin3θsinθ−cos5θsin3θsin4θ=DN⇒sin3θcos5θsinθsinθcos2θcos5θ+cos6θsin3θsinθ−cos5θsin3θsin4θ=0
Now, as we have simplified the given term into sin3θcos5θsinθsinθcos2θcos5θ+cos6θsin3θsinθ−cos5θsin3θsin4θ and its value is zero. Then,
cos282πcsc283π+cos286πcsc289π+cos2818πcsc2827π=0
Thus, the exact value of the given term will be 0.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer. And we should proceed in a stepwise manner and use each formula with proper values and make assumptions like θ=28π for smooth calculation. Moreover, we should avoid calculation mistakes while solving to get the correct answer.Students should remember important trigonometric identities ,formulas and standard trigonometric angles for solving these types of questions.