Solveeit Logo

Question

Physics Question on Gravitation

The escape velocity of a body on the surface of the earth is 11.2km/s111.2\, km/s^{-1}. If the earth's mass increases to twice its present value and radius of the earth becomes half, the escape velocity becomes

A

22.4km/s122.4\, km/s^{-1}

B

44.8km/s144.8\, km/s^{-1}

C

5.6km/s15.6\, km/s^{-1}

D

11.2km/s111.2 \, km/s^{-1}

Answer

22.4km/s122.4\, km/s^{-1}

Explanation

Solution

Escape velocity of a body (ve)=11.2km/s(v_e) = 11.2 \,km/s;
New mass of the earth Me=2Me{M'}_e = 2 M_e and new radius
of the earth Re=0.5Re. {R'}_e = 0.5 R_e .
Escape velocity (ve)=2GMeReMeRe(v_e) = \sqrt{\frac{ 2GM_e}{ R_e}} \propto \sqrt{\frac{ M_e}{ R_e}}.
Therefore veve=MeRe×0.5Re2Me=14=12\frac{ v_e}{{v'}_e} = \sqrt{ \frac{ M_e}{ R_e} \times \frac{ 0.5 R_e}{ 2 M_e}} = \sqrt {\frac{1}{4} } = \frac{1}{2}
or, ve=2ve=22.4km/sec{v'}_e = 2 v_e =22.4\, km / sec.