Solveeit Logo

Question

Question: The escape velocity for a planet is \(v _ { e }\). A tunnel is dug along a diameter of the planet an...

The escape velocity for a planet is vev _ { e }. A tunnel is dug along a diameter of the planet and a small body is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be

A

vev _ { e }

B

C

ve2\frac { v _ { e } } { 2 }

D

Zero

Answer

Explanation

Solution

Gravitational potential at the surface of the earth

Vs=GMRV _ { s } = - \frac { G M } { R }

Gravitational potential at the centre of earth Vc=3GM2RV _ { c } = - \frac { 3 G M } { 2 R }

By the conservation of energy 12mv2=m(VsVc)\frac { 1 } { 2 } m v ^ { 2 } = m \left( V _ { s } - V _ { c } \right)

=ve22= \frac { v _ { e } ^ { 2 } } { 2 } [As ]

\therefore v=ve2v = \frac { v _ { e } } { \sqrt { 2 } }