Solveeit Logo

Question

Question: The equivalent weight of \({\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\tex...

The equivalent weight of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} in the following reaction is:
2Na2S2O3+I2Na2S4O6+2NaI{\text{2N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_3} + {{\text{I}}_{\text{2}}} \to {\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}} + {\text{2NaI}}
A. M{\text{M}}
B. M/8{\text{M/8}}
C. M/0.5{\text{M/0}}{\text{.5}}
D. M/2{\text{M/2}}

Explanation

Solution

Determine the equivalent weight of -Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} using the steps as follows:
-Determine the oxidation numbers of the species in the reaction.
-Determine the N-factor of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}
-Determine the equivalent weight of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}.

Complete step by step answer:
Step 1: Determine the oxidation numbers of the species in the reaction as follows:
The reaction is,
2Na2S2O3+I2Na2S4O6+2NaI{\text{2N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_3} + {{\text{I}}_{\text{2}}} \to {\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}} + {\text{2NaI}}
Determine the oxidation number of sulfur in Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} as follows:
The total charge on Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} is zero. The oxidation number of Na{\text{Na}} is  + 1{\text{ + 1}} and the oxidation number of O{\text{O}} is 2 - 2. Let the oxidation number of sulfur be xx.Thus,
(2 \timesOxidation number of Na)+(2 \timesOxidation number of S)+(3 \timesOxidation number of O)=Total charge on Na2S2O3{\text{(2 \times Oxidation number of Na)}} + {\text{(2 \times Oxidation number of S)}} + {\text{(3 \times Oxidation number of O)}} = {\text{Total charge on N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3}
Thus,
(2×+1)+(2×x)+(3×2)=0(2 \times + 1) + (2 \times x) + (3 \times - 2) = 0
(+2)+(2x)+(6)=0( + 2) + (2x) + ( - 6) = 0
2x=+622x = + 6 - 2
2x=+42x = + 4
x=+2x = + 2
Thus, the oxidation number of sulfur in Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} is  + 2{\text{ + 2}}.
Determine the oxidation number of I2{{\text{I}}_{\text{2}}} as follows:
The oxidation number of any molecule in its elemental form is zero.
Thus, the oxidation number of I2{{\text{I}}_{\text{2}}} is zero.
Determine the oxidation number of sulfur in Na2S4O6{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}} as follows:
The total charge on Na2S4O6{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}} is zero. The oxidation number of Na{\text{Na}} is  + 1{\text{ + 1}} and the oxidation number of O{\text{O}} is 2 - 2. Let the oxidation number of sulfur be xx.Thus,
(2 \timesOxidation number of Na)+(4 \timesOxidation number of S)+(6 \timesOxidation number of O)=Total charge on Na2S4O6{\text{(2 \times Oxidation number of Na)}} + {\text{(4 \times Oxidation number of S)}} + {\text{(6 \times Oxidation number of O)}} = {\text{Total charge on N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}}
Thus,
(2×+1)+(4×x)+(6×2)=0(2 \times + 1) + (4 \times x) + (6 \times - 2) = 0
(+2)+(4x)+(12)=0( + 2) + (4x) + ( - 12) = 0
4x=+1224x = + 12 - 2
4x=+104x = + 10
x=+2.5x = + 2.5
Thus, the oxidation number of sulfur in Na2S4O6{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}} is +2.5 + 2.5.
Determine the oxidation number of iodine in NaI{\text{NaI}} as follows:
The total charge on NaI{\text{NaI}} is zero. The oxidation number of Na{\text{Na}} is  + 1{\text{ + 1}}. Let the oxidation number of iodine be xx.Thus,
(1 \timesOxidation number of Na)+(1 \timesOxidation number of I)=Total charge on NaI{\text{(1 \times Oxidation number of Na)}} + {\text{(1 \times Oxidation number of I)}} = {\text{Total charge on NaI}}
Thus,
(1×+1)+(1×x)=0(1 \times + 1) + (1 \times x) = 0
x=1x = - 1
Thus, the oxidation number of iodine in NaI{\text{NaI}} is 1 - 1.
Thus,
2Na2S2+2O3+I20Na2S4+2.5O6+2NaI1{\text{2N}}{{\text{a}}_{\text{2}}}\mathop {{{\text{S}}_{\text{2}}}}\limits^{ + 2} {{\text{O}}_3} + \mathop {{{\text{I}}_{\text{2}}}}\limits^0 \to {\text{N}}{{\text{a}}_{\text{2}}}\mathop {{{\text{S}}_{\text{4}}}}\limits^{ + 2.5} {{\text{O}}_{\text{6}}} + {\text{2Na}}\mathop {\text{I}}\limits^{ - 1}
Step 2: Determine the N-factor of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} as follows:
The oxidation number of sulfur changes from  + 2{\text{ + 2}} to +2.5 + 2.5. Thus,
Nfactor of Na2S2O3=Number of sulfur atoms×Change in oxidation state{\text{N}} - {\text{factor of N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3} = {\text{Number of sulfur atoms}} \times {\text{Change in oxidation state}}
Thus,
Nfactor of Na2S2O3=2×(2.52){\text{N}} - {\text{factor of N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3} = 2 \times (2.5 - 2)
Nfactor of Na2S2O3=2×(0.5){\text{N}} - {\text{factor of N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3} = 2 \times (0.5)
Nfactor of Na2S2O3=1{\text{N}} - {\text{factor of N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3} = 1
Thus, the N-factor of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} is 11.
Step 3: Determine the equivalent weight of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} as follows:
The equivalent weight is the ratio of the molecular weight to the N-factor.
Consider that the molecular weight of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} is M{\text{M}}. Thus,
Equivalent weight of Na2S2O3=M1{\text{Equivalent weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} = \dfrac{{\text{M}}}{1}
Equivalent weight of Na2S2O3=M{\text{Equivalent weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} = {\text{M}}
Thus, the equivalent weight of Na2S2O3{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} is M{\text{M}}.
So, the correct answer is “Option A”.

Note: The N-factor for the acids is the number of replaceable H + {{\text{H}}^{\text{ + }}} ions while the N-factor for the bases is the number of replaceable OH{\text{O}}{{\text{H}}^ - } ions.