Solveeit Logo

Question

Question: The equivalent resistance for the ‘n’ resistors with resistance R connected in parallel is \( ...

The equivalent resistance for the ‘n’ resistors with resistance R connected in parallel is
(A) nR (B) R (C) Rn (D) nR2  {\text{(A) nR}} \\\ {\text{(B) R}} \\\ {\text{(C) }}\dfrac{{\text{R}}}{{\text{n}}} \\\ {\text{(D) n}}{{\text{R}}^{\text{2}}} \\\

Explanation

Solution

For evaluating equivalent resistance for n number of resistors in parallel combination, use ohm’s law and substitute the value of current through each resistor there. In parallel, the potential difference is the same (constant).

Complete step by step solution: The circuit diagram for the n number of resistors connected in parallel combination is as shown:

Let us consider that I1{{\text{I}}_{\text{1}}}current flows through resistor R1{{\text{R}}_{\text{1}}}
Let I2{{\text{I}}_{\text{2}}}current flows through resistor through resistor R2{{\text{R}}_{\text{2}}}
And let I3{{\text{I}}_3}current flows through resistor through resistor R3{{\text{R}}_3}
And R = resistance of the conductor
Total current in the circuit is given by
I = I1 + I2 + I3...(i){\text{I = }}{{\text{I}}_{\text{1}}}{\text{ + }}{{\text{I}}_{\text{2}}}{\text{ + }}{{\text{I}}_{\text{3}}}...{\text{(i)}}
According to the ohm’s law, the current flowing through a conductor is directly proportional to the potential difference across the ends of the conductor provided that the physical conditions like temperature, pressure of the conductor remain constant.
V = IR{\text{V = IR}}
Or I = VR{\text{I = }}\dfrac{{\text{V}}}{{\text{R}}}
Where V = potential difference applied across the ends of the conductor
I = current flowing through the conductor
In parallel, potential difference (V) is the same.
For current I1{{\text{I}}_{\text{1}}}
I1 = VR1{{\text{I}}_{\text{1}}}{\text{ = }}\dfrac{{\text{V}}}{{{{\text{R}}_{\text{1}}}}}
For current I2{{\text{I}}_{\text{2}}}
I2 = VR2{{\text{I}}_2}{\text{ = }}\dfrac{{\text{V}}}{{{{\text{R}}_2}}}
For current I3{{\text{I}}_{\text{3}}}
I3 = VR3{{\text{I}}_3}{\text{ = }}\dfrac{{\text{V}}}{{{{\text{R}}_3}}}
Now substituting the values of cI1I2 and I3{{\text{I}}_{\text{1}}}{\text{, }}{{\text{I}}_{\text{2}}}{\text{ and }}{{\text{I}}_{\text{3}}}current, we get
VRp = VR1 + VR2 + VR3 1Rp = 1R1 + 1R2 + 1R3  \dfrac{{\text{V}}}{{{{\text{R}}_{\text{p}}}}}{\text{ = }}\dfrac{{\text{V}}}{{{{\text{R}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{V}}}{{{{\text{R}}_{\text{2}}}}}{\text{ + }}\dfrac{{\text{V}}}{{{{\text{R}}_{\text{3}}}}} \\\ \Rightarrow \dfrac{{\text{1}}}{{{{\text{R}}_{\text{p}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{R}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{R}}_{\text{2}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{R}}_{\text{3}}}}} \\\
For n number of resistors
1Rn = 1R1 + 1R2 + 1R3 + ... + 1Rn\dfrac{{\text{1}}}{{{{\text{R}}_{\text{n}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{R}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{R}}_{\text{2}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{R}}_{\text{3}}}}}{\text{ + }}...{\text{ + }}\dfrac{{\text{1}}}{{{{\text{R}}_{\text{n}}}}}
According to the question, resistance for the ‘n’ resistors have resistance R.
 R1 = R2 = R3 = ......... = Rn = R\therefore {\text{ }}{{\text{R}}_{\text{1}}}{\text{ = }}{{\text{R}}_{\text{2}}}{\text{ = }}{{\text{R}}_{\text{3}}}{\text{ = }}.........{\text{ = }}{{\text{R}}_{\text{n}}}{\text{ = R}}
So, Rp = Rn{{\text{R}}_{\text{p}}}{\text{ = }}\dfrac{{\text{R}}}{{\text{n}}}
The equivalent resistance for the ‘n’ resistors with resistance R connected in parallel isRn\dfrac{{\text{R}}}{{\text{n}}}.

Therefore, option (C) is the correct choice.

Note: Similarly, we can find the equivalent resistance for the ‘n’ resistors with resistance R connected in series combination using ohm’s law. But keep in mind that in series combination the value of current is the same (constant).