Solveeit Logo

Question

Question: The equivalent resistance between points A and ...

The equivalent resistance between points A and

A

652Ω\frac{65}{2}\Omega

B

452Ω\frac{45}{2}\Omega

C

52Ω\frac{5}{2}\Omega

D

912Ω\frac{91}{2}\Omega

Answer

None of the options matched the calculated value.

Explanation

Solution

Let's interpret the circuit diagram based on standard conventions. The circuit consists of a square-shaped arrangement of resistors with two diagonal resistors. Let the four corner nodes be: - Top-left: A - Top-right: Q - Bottom-right: R - Bottom-left: B The resistors on the perimeter of the square are: - RAQ=2ΩR_{AQ} = 2\Omega (between A and Q) - RQR=15ΩR_{QR} = 15\Omega (between Q and R) - RRB=40ΩR_{RB} = 40\Omega (between R and B) - The left side of the square has two resistors, 8Ω and 20Ω, placed one below the other. The most common interpretation for such a drawing is that they are in series, forming the left arm of the bridge. So, RBA=8Ω+20Ω=28ΩR_{BA} = 8\Omega + 20\Omega = 28\Omega (between B and A). The diagonal resistors are: - RAR=30ΩR_{AR} = 30\Omega (between A and R) - RQB=10ΩR_{QB} = 10\Omega (between Q and B) This is a complex Wheatstone bridge configuration. We can solve it using Nodal Analysis. Let the potential at point B be 0V0V. Let the potential at point A be VV. Let the potentials at nodes Q and R be VQV_Q and VRV_R respectively. Applying Kirchhoff's Current Law (KCL) at nodes Q and R: At Node Q: (Sum of currents leaving Q is zero) Currents leaving Q are: - To A: (VQV)/2(V_Q - V)/2 - To R: (VQVR)/15(V_Q - V_R)/15 - To B: (VQ0)/10(V_Q - 0)/10 VQV2+VQVR15+VQ10=0\frac{V_Q - V}{2} + \frac{V_Q - V_R}{15} + \frac{V_Q}{10} = 0 Multiply by LCM(2, 15, 10) = 30: 15(VQV)+2(VQVR)+3VQ=015(V_Q - V) + 2(V_Q - V_R) + 3V_Q = 0 15VQ15V+2VQ2VR+3VQ=015V_Q - 15V + 2V_Q - 2V_R + 3V_Q = 0 20VQ2VR=15V20V_Q - 2V_R = 15V --- (Equation 1) At Node R: (Sum of currents leaving R is zero) Currents leaving R are: - To Q: (VRVQ)/15(V_R - V_Q)/15 - To B: (VR0)/40(V_R - 0)/40 - To A: (VRV)/30(V_R - V)/30 VRVQ15+VR40+VRV30=0\frac{V_R - V_Q}{15} + \frac{V_R}{40} + \frac{V_R - V}{30} = 0 Multiply by LCM(15, 40, 30) = 120: 8(VRVQ)+3VR+4(VRV)=08(V_R - V_Q) + 3V_R + 4(V_R - V) = 0 8VR8VQ+3VR+4VR4V=08V_R - 8V_Q + 3V_R + 4V_R - 4V = 0 8VQ+15VR=4V-8V_Q + 15V_R = 4V --- (Equation 2) Now we have a system of two linear equations: 1) 20VQ2VR=15V20V_Q - 2V_R = 15V 2) 8VQ+15VR=4V-8V_Q + 15V_R = 4V From Equation 1, express VRV_R in terms of VQV_Q: 2VR=20VQ15V    VR=10VQ152V2V_R = 20V_Q - 15V \implies V_R = 10V_Q - \frac{15}{2}V Substitute this expression for VRV_R into Equation 2: 8VQ+15(10VQ152V)=4V-8V_Q + 15(10V_Q - \frac{15}{2}V) = 4V 8VQ+150VQ2252V=4V-8V_Q + 150V_Q - \frac{225}{2}V = 4V 142VQ=4V+2252V142V_Q = 4V + \frac{225}{2}V 142VQ=8V+225V2142V_Q = \frac{8V + 225V}{2} 142VQ=233V2142V_Q = \frac{233V}{2} VQ=233V284V_Q = \frac{233V}{284} Now, calculate VRV_R: VR=10(233V284)152VV_R = 10 \left(\frac{233V}{284}\right) - \frac{15}{2}V VR=2330V28415×142V284V_R = \frac{2330V}{284} - \frac{15 \times 142V}{284} VR=2330V2130V284V_R = \frac{2330V - 2130V}{284} VR=200V284=50V71V_R = \frac{200V}{284} = \frac{50V}{71} The total current II flowing from A to B is the sum of currents leaving node A: I=IAQ+IAR+IABI = I_{A \to Q} + I_{A \to R} + I_{A \to B} (where IABI_{A \to B} is the current through the 28Ω28\Omega arm directly connecting A and B) I=VVQ2+VVR30+V028I = \frac{V - V_Q}{2} + \frac{V - V_R}{30} + \frac{V - 0}{28} Substitute the values of VQV_Q and VRV_R: I=V233V2842+V50V7130+V28I = \frac{V - \frac{233V}{284}}{2} + \frac{V - \frac{50V}{71}}{30} + \frac{V}{28} I=284V233V2842+71V50V7130+V28I = \frac{\frac{284V - 233V}{284}}{2} + \frac{\frac{71V - 50V}{71}}{30} + \frac{V}{28} I=51V568+21V2130+V28I = \frac{51V}{568} + \frac{21V}{2130} + \frac{V}{28} I=51V568+7V710+V28I = \frac{51V}{568} + \frac{7V}{710} + \frac{V}{28} To sum these fractions, find the Least Common Multiple (LCM) of the denominators (568, 710, 28). 568=8×71568 = 8 \times 71 710=10×71710 = 10 \times 71 28=4×728 = 4 \times 7 LCM(568,710,28)=23×5×7×71=8×5×7×71=40×497=19880(568, 710, 28) = 2^3 \times 5 \times 7 \times 71 = 8 \times 5 \times 7 \times 71 = 40 \times 497 = 19880. I=V(51×(19880/568)19880+7×(19880/710)19880+1×(19880/28)19880)I = V \left( \frac{51 \times (19880/568)}{19880} + \frac{7 \times (19880/710)}{19880} + \frac{1 \times (19880/28)}{19880} \right) I=V(51×3519880+7×2819880+1×71019880)I = V \left( \frac{51 \times 35}{19880} + \frac{7 \times 28}{19880} + \frac{1 \times 710}{19880} \right) I=V(178519880+19619880+71019880)I = V \left( \frac{1785}{19880} + \frac{196}{19880} + \frac{710}{19880} \right) I=V(1785+196+71019880)I = V \left( \frac{1785 + 196 + 710}{19880} \right) I=V(269119880)I = V \left( \frac{2691}{19880} \right) The equivalent resistance ReqR_{eq} is VI\frac{V}{I}: Req=198802691ΩR_{eq} = \frac{19880}{2691}\Omega Now, let's compare this calculated value with the given options: (1) 652Ω=32.5Ω\frac{65}{2}\Omega = 32.5\Omega (2) 452Ω=22.5Ω\frac{45}{2}\Omega = 22.5\Omega (3) 52Ω=2.5Ω\frac{5}{2}\Omega = 2.5\Omega (4) 912Ω=45.5Ω\frac{91}{2}\Omega = 45.5\Omega Our calculated value is Req=1988026917.387ΩR_{eq} = \frac{19880}{2691} \approx 7.387\Omega. This value does not match any of the provided options. This suggests a potential error in the question's diagram values or the options themselves. The final answer is None of the options matched the calculated value.\boxed{\text{None of the options matched the calculated value.}}