Solveeit Logo

Question

Question: The equivalent capacitance for the network shown in the figure is. <img src="https://cdn.pureessenc...

The equivalent capacitance for the network shown in the figure is.

A

12007pF\frac{1200}{7}pF

B

10004pF\frac{1000}{4}pF

C

18007pF\frac{1800}{7}pF

D

13003PF\frac{1300}{3}PF

Answer

12007pF\frac{1200}{7}pF

Explanation

Solution

:

Capacitance of C1=C4=100pFC_{1} = C_{4} = 100pF

Capacitance of C2=C3=400pFC_{2} = C_{3} = 400pF

Supply voltage,V=400VV = 400V

Capacitors C2C_{2}and C3C_{3}are connected in series,

Equivalent capacitance

C=1400+1400=2400C' = \frac{1}{400} + \frac{1}{400} = \frac{2}{400} or C=200pFC' = 200pF

Capacitors C1C_{1}and CCare in parallel their equivalent capacitance

C=C+C1=200+100=300pFC'' = C' + C_{1} = 200 + 100 = 300pF

Capacitors CC''and C4C_{4}are connected in series

Equivalent capacitance,1Ceq=1C+1C4=1300+1400\frac{1}{C_{eq}} = \frac{1}{C''} + \frac{1}{C_{4}} = \frac{1}{300} + \frac{1}{400}

1Ceq=71200\frac{1}{C_{eq}} = \frac{7}{1200}

Ceq=12007pF\therefore C_{eq} = \frac{1200}{7}pF