Solveeit Logo

Question

Question: The equilibrium constant ( \({K_p}\)) for the decomposition of gaseous \({H_2}O\) . \({H_2}O(g) \rig...

The equilibrium constant ( Kp{K_p}) for the decomposition of gaseous H2O{H_2}O . H2O(g)H2(g)+12O2(g){H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g) is related to degree of dissociation ( α\alpha ) at a total pressure p is given by,
A.Kp=α3p12(1+α)(2+α)12{K_p} = \dfrac{{{\alpha ^3}{p^{\dfrac{1}{2}}}}}{{\left( {1 + \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}
B.Kp=α3p32(1+α)(2+α)12{K_p} = \dfrac{{{\alpha ^3}{p^{\dfrac{3}{2}}}}}{{\left( {1 + \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}
C.Kp=α32p2(1+α)(2+α)12{K_p} = \dfrac{{{\alpha ^{\dfrac{3}{2}}}{p^2}}}{{\left( {1 + \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}
D.Kp=α32p12(1α)(2+α)12{K_p} = \dfrac{{{\alpha ^{\dfrac{3}{2}}}{p^{\dfrac{1}{2}}}}}{{\left( {1 - \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}

Explanation

Solution

Kp{K_p} is the equilibrium constant written in terms of partial pressure of reactants and products. So in order to solve this question, we need to calculate partial pressure of each component in terms of degree of dissociation.

Complete step by step answer:
The given reaction is,
H2O(g)H2(g)+12O2(g){H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g)
Kp{K_p} for this reaction can be written as,
Kp=(pH2)(pO2)12(pH2O){K_p} = \dfrac{{\left( {p{H_2}} \right){{\left( {p{O_2}} \right)}^{\dfrac{1}{2}}}}}{{\left( {p{H_2}O} \right)}}
Where pH2p{H_2} is partial pressure of hydrogen gas, pO2p{O_2} is partial pressure of oxygen gas and pH2Op{H_2}O is partial pressure of water vapour.
Let X be the initial pressure of water vapour. At this time, pressure of hydrogen gas and oxygen gas are zero. At equilibrium, pressure of water vapour, hydrogen gas and oxygen gas are X(1α)X(1 - \alpha ) , XαX\alpha and Xα2\dfrac{{X\alpha }}{2} respectively.
H2O(g)H2(g)+12O2(g) X 0 0 (at t = 0) X(1 - α) Xα Xα2 (at equilibrium)  {H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g) \\\ {\text{X 0 0 (at t = 0)}} \\\ {\text{X(1 - }}\alpha {\text{) X}}\alpha {\text{ }}\dfrac{{X\alpha }}{2}{\text{ (at equilibrium)}} \\\
Given that total pressure is p. Hence we can write,
p=X(1α)+Xα+Xα2=X+Xα2=X(2+α)2p = X(1 - \alpha ) + X\alpha + \dfrac{{X\alpha }}{2} = X + \dfrac{{X\alpha }}{2} = \dfrac{{X(2 + \alpha )}}{2}
From this we can write,
X=2p2+αX = \dfrac{{2p}}{{2 + \alpha }}
Now let us substitute the values of partial pressures on the equation of Kp{K_p} .
Kp=(Xα)(Xα2)12X(1α)=(X32α32212X(1α))=(X12α32212(1α)){K_p} = \dfrac{{\left( {X\alpha } \right){{\left( {\dfrac{{X\alpha }}{2}} \right)}^{\dfrac{1}{2}}}}}{{X(1 - \alpha )}} = \left( {\dfrac{{{X^{\dfrac{3}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}X(1 - \alpha )}}} \right) = \left( {\dfrac{{{X^{\dfrac{1}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}(1 - \alpha )}}} \right)
Now substitute the value of X, X=2p2+αX = \dfrac{{2p}}{{2 + \alpha }}
Kp=((pα(2+α))12α32212(1α)){K_p} = \left( {\dfrac{{{{\left( {\dfrac{{p\alpha }}{{(2 + \alpha )}}} \right)}^{\dfrac{1}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}(1 - \alpha )}}} \right)
Simplifying the equation we get,
Kp=α32p12(1α)(2+α)12{K_p} = \dfrac{{{\alpha ^{\dfrac{3}{2}}}{p^{\dfrac{1}{2}}}}}{{\left( {1 - \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}
Therefore, the correct option is D.

Note:
We can also do the calculation by first substituting the value of X on partial pressure of each component and then substituting the values on the equation of Kp{K_p} .
Partial pressure of water vapour in terms of degree of dissociation can be written as,
pH2O=X(1α)=2p2+α(1α)p{H_2}O = X(1 - \alpha ) = \dfrac{{2p}}{{2 + \alpha }}(1 - \alpha )
Partial pressure of hydrogen gas can be written as,
pH2=Xα=2pα2+αp{H_2} = X\alpha = \dfrac{{2p\alpha }}{{2 + \alpha }}
Partial pressure of oxygen gas can be written as,
pO2=Xα2=2pα2(2+α)=pα(2+α)p{O_2} = \dfrac{{X\alpha }}{2} = \dfrac{{2p\alpha }}{{2\left( {2 + \alpha } \right)}} = \dfrac{{p\alpha }}{{\left( {2 + \alpha } \right)}}
When we substitute these values on the equation of Kp{K_p} , we will get the same answer.