Solveeit Logo

Question

Question: The equations \(x=a\cos \theta +b\sin \theta \text{ and }y=a\sin \theta -b\cos \theta \) represent ...

The equations x=acosθ+bsinθ and y=asinθbcosθx=a\cos \theta +b\sin \theta \text{ and }y=a\sin \theta -b\cos \theta represent
(a) Circle
(b) A parabola
(c) A line
(d) An ellipse

Explanation

Solution

Hint: Squaring both terms and then adding them then apply a trigonometric formula.

Complete step-by-step answer:
Given equations are:
(1)x=acosθ+bsinθx=a\cos \theta +b\sin \theta
Squaring both sides; it will give
x2=(acosθ+bsinθ)2{{x}^{2}}={{(a\cos \theta +b\sin \theta )}^{2}}
x2=a2cos2θ+b2sin2θ+2abcosθ.sinθ{{x}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +2ab\cos \theta .\sin \theta
(2) y=asinθbcosθy=a\sin \theta -b\cos \theta
Squaring both sides; it will give
y2=(asinθbcosθ)2{{y}^{2}}={{(a\sin \theta -b\cos \theta )}^{2}}
y2=a2sin2θ+b2cos2θ2abcosθ.sinθ{{y}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta -2ab\cos \theta .\sin \theta
Now adding (x2+y2)\left( {{x}^{2}}+{{y}^{2}} \right), we get

& \text{ }{{x}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +{2ab\cos \theta .\sin \theta } \\\ & \underline{(+)\text{ }{{y}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta -{2ab\sin \theta .\cos \theta }} \\\ \end{aligned}$$ $\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta $ Rearranging the term, we get $\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta $ Taking out the common term, we get $\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )+{{b}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )$ Now we know, $\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right]$, so the above expression can be written as, $\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}\times 1+{{b}^{2}}\times 1$ $\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}+{{b}^{2}}$ This represents an equation of circle with origin as centre and $(\sqrt{{{a}^{2}}+{{b}^{2}}})$ as the radius. Hence the correct answer is option (a). Answer is option (a) Note: Whenever this type of question is given, that involves sine and cosine functions, squaring is must and then add the result. This is the easiest way to solve it. Suppose that we consider the operation $\dfrac{x}{y}$ , we get a different result.