Solveeit Logo

Question

Question: The equations x + 2y + 3z = 1, x – y + 4z = 0, 2x + y + 7z = 1 have –...

The equations x + 2y + 3z = 1, x – y + 4z = 0,

2x + y + 7z = 1 have –

A

Only one solution

B

Two solutions

C

No solution

D

Infinitely many solutions

Answer

Infinitely many solutions

Explanation

Solution

D = 123114217\left| \begin{matrix} 1 & 2 & 3 \\ 1 & - 1 & 4 \\ 2 & 1 & 7 \end{matrix} \right| = 0;D1 = 123014117\left| \begin{matrix} 1 & 2 & 3 \\ 0 & - 1 & 4 \\ 1 & 1 & 7 \end{matrix} \right| = 0

D2 = 113104217\left| \begin{matrix} 1 & 1 & 3 \\ 1 & 0 & 4 \\ 2 & 1 & 7 \end{matrix} \right| = 0 ; D3 = 121110211\left| \begin{matrix} 1 & 2 & 1 \\ 1 & - 1 & 0 \\ 2 & 1 & 1 \end{matrix} \right| = 0

Given system of equation may have ly many solution

Check :- Let z=k\begin{matrix} z = k \end{matrix}

\ x + 2y = 1 – 3k

x – y = – 4k

– + +

3y = 1 + k

Ž y=1+k3\begin{matrix} y = \frac{1 + k}{3} \end{matrix}

x=4k+1+k3=111k3\begin{matrix} x = –4k + \frac{1 + k}{3} = \frac{1 - 11k}{3} \end{matrix}

Satisfies 3rd equation

2 (111k3)\left( \frac{1–11k}{3} \right) + (1+k3)\left( \frac{1 + k}{3} \right) + 7k = 1 Ž 2 – 22k + 1 + k + 21k = 3 Ž 3 = 3

\infinitely many sol.