Solveeit Logo

Question

Question: The equations to the tangents to the circle \(x ^ { 2 } + y ^ { 2 } - 6 x + 4 y = 12\) which are par...

The equations to the tangents to the circle x2+y26x+4y=12x ^ { 2 } + y ^ { 2 } - 6 x + 4 y = 12 which are parallel to the straight line 4x+3y+5=0, are

A

3x4y19=0,3x4y+31=03 x - 4 y - 19 = 0 , \quad 3 x - 4 y + 31 = 0

B

4x+3y19=0,4x+3y+31=04 x + 3 y - 19 = 0 , \quad 4 x + 3 y + 31 = 0

C

4x+3y+19=0,4x+3y31=04 x + 3 y + 19 = 0 , \quad 4 x + 3 y - 31 = 0

D

3x4y+19=0,3x4y+31=03 x - 4 y + 19 = 0 , \quad 3 x - 4 y + 31 = 0

Answer

4x+3y+19=0,4x+3y31=04 x + 3 y + 19 = 0 , \quad 4 x + 3 y - 31 = 0

Explanation

Solution

Let equation of tangent be 4x+3y+k=04 x + 3 y + k = 0 then

9+4+12=4(3)+3(2)+k16+9\sqrt { 9 + 4 + 12 } = \left| \frac { 4 ( 3 ) + 3 ( - 2 ) + k } { \sqrt { 16 + 9 } } \right|

6+k=±25k=196 + k = \pm 25 \Rightarrow k = 19 and – 31

Hence the equations of tangents are 4x+3y31=04 x + 3 y - 31 = 0