Question
Mathematics Question on Coordinate Geometry
The equations of two sides AB and AC of a triangle ABC are 4x+y=14 and 3x−2y=5, respectively. The point (2,−34) divides the third side BC internally in the ratio 2 : 1. The equation of the side BC is:
x – 6y – 10 = 0
x – 3y – 6 = 0
x + 3y + 2 = 0
x + 6y + 6 = 0
x + 3y + 2 = 0
Solution
Given:
The given equations are:
AB:4x+y=14,AC:3x−2y=5.
Coordinates of B and C
The coordinates of B on AB:
B(x1,y1)where y1=14−4x1.
The coordinates of C on AC:
C(x2,y2)where y2=23x2−5.
Use Section Formula
The point P(2,−34) divides BC in the ratio 2:1. Using the section formula:
xp=32x2+x1,yp=32y2+y1.
Substitute xp=2 and yp=−34 into these equations.
Solve for x1 and x2
For xp=2:
2=32x2+x1.
Rearrange:
6=2x2+x1⟹x1=6−2x2.
For yp=−34:
−34=32y2+y1.
Substitute y1=14−4x1 and y2=23x2−5:
−34=32(23x2−5)+(14−4x1).
Simplify:
−34=33x2−5+14−4x1.
Multiply through by 3:
−4=3x2−5+14−4x1.
Combine terms:
−4=3x2+9−4x1⟹3x2−4x1=−13.
Substitute x1=6−2x2 into 3x2−4x1=−13:
3x2−4(6−2x2)=−13.
Simplify:
3x2−24+8x2=−13⟹11x2=11⟹x2=1.
Substitute x2=1 into x1=6−2x2:
x1=6−2(1)=4.
--- Step 4: Solve for y1 and y2
Substitute x1=4 into y1=14−4x1:
y1=14−4(4)=−2.
Substitute x2=1 into y2=23x2−5:
y2=23(1)−5=2−2=−1.
Thus, B(4,−2) and C(1,−1).
Slope of BC
The slope of BC is:
m=x2−x1y2−y1=1−4−1−(−2)=−31=−31.
Equation of BC
Using the point-slope form at B(4,−2):
y−(−2)=−31(x−4).
Simplify:
y+2=−31x+34.
Multiply through by 3:
3y+6=−x+4⟹x+3y+2=0.
Final Answer:
x+3y+2=0.