Solveeit Logo

Question

Mathematics Question on Conic sections

The equations of the two tangents from (5,4)(-5, - 4) to the circle x2+y2+4x+6y+8=0x^2 + y^2 + 4x + 6y + 8 = 0 are

A

x+2y+13=0,2xy+6=0x + 2y+13 = 0, \, \, \, \, \, \, 2x-y + 6 = 0

B

2x+y+13=0,x2y=62x + y + 13 = 0, \, \, \, \, \, \, x-2y = 6

C

3x+2y+23=02x3y+4=03x + 2y + 23 = 0 \, \, \, \, \, 2x - 3y + 4 = 0

D

x7y=23,6x+13y=4x-7y = 23, \, \, \, \, \, \, 6x+13y = 4

Answer

x+2y+13=0,2xy+6=0x + 2y+13 = 0, \, \, \, \, \, \, 2x-y + 6 = 0

Explanation

Solution

Any line through the point (5,4)(- 5, - 4) is
y+4=m(x+5)y + 4 = m (x + 5)
mxy+(5m4)=0(i)mx - y + (5m - 4) = 0 \,\,\,\,\,\dots(i)
Now, radius of circle
=(2)2+(3)28=4+98=5=\sqrt{\left(2\right)^{2}+\left(3\right)^{2}-8}=\sqrt{4+9-8}=\sqrt{5}
If it is a tangent , then perpendicular from centre (2,3)(- 2, - 3) is equal to the above radius.
m(2)(3)+(5m4)m2+1=5\therefore{ \frac{m\left(-2\right)-\left(-3\right)+\left(5m-4\right)}{\sqrt{m^{2}+1}}}=\sqrt{5}
2m+3+5m4=51+m2\Rightarrow - 2m + 3 + 5m - 4 =\sqrt{5} \sqrt{1+m^{2}}
3m1=51+m2\Rightarrow 3m -1 =\sqrt{5}\sqrt{1+m^{2}}
(3m1)2=5(1+m2)\Rightarrow \left(3m-1\right)^{2}=5\left(1+m^{2}\right)
9m2+16m=5+5m2\Rightarrow 9m^{2} + 1 - 6m = 5 + 5m^{2}
4m26m4=0\Rightarrow 4m^{2} - 6m-4=0
4m28m+2m4=0\Rightarrow 4m^{2}- 8m + 2m - 4 = 0
4m(m2)+2(m2)=0\Rightarrow 4m \left(m - 2\right) + 2 \left(m - 2\right) = 0
(m2)(4m+2)=0\Rightarrow\left(m-2\right)\left(4m+2\right)=0
m=2,12\Rightarrow m=2, -\frac{1}{2}
Putting the value of m = 2 in E (i) , we get
2xy+5x24=02x - y + 5 x 2 - 4 = 0
2xy+6=0\Rightarrow\, 2x - y + 6 = 0
Again, putting the value of m=12m=-\frac{1}{2} in E (i) , we get
12xy+5(12)4=0-\frac{1}{2}x-y+5\left(-\frac{1}{2}\right)-4=0
x2y58=0\Rightarrow x - 2y - 5 - 8 = 0
x+2y+13=0\Rightarrow x + 2y + 13= 0