Question
Mathematics Question on Conic sections
The equations of the two tangents from (−5,−4) to the circle x2+y2+4x+6y+8=0 are
A
x+2y+13=0,2x−y+6=0
B
2x+y+13=0,x−2y=6
C
3x+2y+23=02x−3y+4=0
D
x−7y=23,6x+13y=4
Answer
x+2y+13=0,2x−y+6=0
Explanation
Solution
Any line through the point (−5,−4) is
y+4=m(x+5)
mx−y+(5m−4)=0…(i)
Now, radius of circle
=(2)2+(3)2−8=4+9−8=5
If it is a tangent , then perpendicular from centre (−2,−3) is equal to the above radius.
∴m2+1m(−2)−(−3)+(5m−4)=5
⇒−2m+3+5m−4=51+m2
⇒3m−1=51+m2
⇒(3m−1)2=5(1+m2)
⇒9m2+1−6m=5+5m2
⇒4m2−6m−4=0
⇒4m2−8m+2m−4=0
⇒4m(m−2)+2(m−2)=0
⇒(m−2)(4m+2)=0
⇒m=2,−21
Putting the value of m = 2 in E (i) , we get
2x−y+5x2−4=0
⇒2x−y+6=0
Again, putting the value of m=−21 in E (i) , we get
−21x−y+5(−21)−4=0
⇒x−2y−5−8=0
⇒x+2y+13=0