Solveeit Logo

Question

Question: The equations of the tangents to the circle \(x ^ { 2 } + y ^ { 2 } = 50\)at the points where the li...

The equations of the tangents to the circle x2+y2=50x ^ { 2 } + y ^ { 2 } = 50at the points where the line x+7=0x + 7 = 0 meets it, are.

A

7x±y+50=07 x \pm y + 50 = 0

B

7x±y5=07 x \pm y - 5 = 0

C

y±7x+5=0y \pm 7 x + 5 = 0

D

y±7x5=0y \pm 7 x - 5 = 0

Answer

7x±y+50=07 x \pm y + 50 = 0

Explanation

Solution

Points where x+7=0x + 7 = 0 meets the circle x2+y2=50x ^ { 2 } + y ^ { 2 } = 50 are (7,1)( - 7,1 ) and (7,1)( - 7 , - 1 ). Hence equations of tangents at these points are 7x±y=50- 7 x \pm y = 50 or 7x±y+50=07 x \pm y + 50 = 0.