Solveeit Logo

Question

Question: The equations of the normal at the ends of the latus rectum of the parabola \(y ^ { 2 } = 4 a x\)are...

The equations of the normal at the ends of the latus rectum of the parabola y2=4axy ^ { 2 } = 4 a xare given by

A

x2y26ax+9a2=0x ^ { 2 } - y ^ { 2 } - 6 a x + 9 a ^ { 2 } = 0

B

x2y26ax6ay+9a2=0x ^ { 2 } - y ^ { 2 } - 6 a x - 6 a y + 9 a ^ { 2 } = 0

C

x2y26ay+9a2=0x ^ { 2 } - y ^ { 2 } - 6 a y + 9 a ^ { 2 } = 0

D

None of these

Answer

x2y26ax+9a2=0x ^ { 2 } - y ^ { 2 } - 6 a x + 9 a ^ { 2 } = 0

Explanation

Solution

The coordinates of the ends of the latus rectum of the parabola y2=4axy ^ { 2 } = 4 a xare (a,2a)( a , 2 a ) and (a,2a)( a , - 2 a ) respectively.

The equation of the normal at (a,2a)( a , 2 a ) to y2=4axy ^ { 2 } = 4 a xis y2a=2a2a(xa)y - 2 a = \frac { - 2 a } { 2 a } ( x - a )

Or x+y3a=0x + y - 3 a = 0 .....(i)

Similarly the equation of the normal at (a, –2a) is

xy3a=0x - y - 3 a = 0 .....(ii)

The combined equation of (i) and (ii) is

x2y26ax+9a2=0x ^ { 2 } - y ^ { 2 } - 6 a x + 9 a ^ { 2 } = 0