Solveeit Logo

Question

Question: The equations of the lines which pass through the origin and are inclined at an angle \(\tan ^ { - ...

The equations of the lines which pass through the origin and are inclined at an angle tan1m\tan ^ { - 1 } m to the line y=mx+cy = m x + c are.

A

x=0,2mx+(m21)y=0x = 0,2 m x + \left( m ^ { 2 } - 1 \right) y = 0

B

y=0,2mx+(m21)y=0y = 0,2 m x + \left( m ^ { 2 } - 1 \right) y = 0

C

y=0,2mx+(1m2)y=0y = 0,2 m x + \left( 1 - m ^ { 2 } \right) y = 0

D

None of these

Answer

y=0,2mx+(m21)y=0y = 0,2 m x + \left( m ^ { 2 } - 1 \right) y = 0

Explanation

Solution

Angle between both the lines is

tan1m±tan1m=tan12m1m2\tan ^ { - 1 } m \pm \tan ^ { - 1 } m = \tan ^ { - 1 } \frac { 2 m } { 1 - m ^ { 2 } } or tan10\tan ^ { - 1 } 0

Therefore equation of lines are y=0y = 0 , y=2mx1m2y = \frac { 2 m x } { 1 - m ^ { 2 } } .