Solveeit Logo

Question

Question: The equations of the lines passing through the point (1, 0) and at a distance \(\frac { \sqrt { 3 }...

The equations of the lines passing through the point

(1, 0) and at a distance 32\frac { \sqrt { 3 } } { 2 } from the origin, are.

A
B

3x+y+3=0,3xy+3=0\sqrt { 3 } x + y + \sqrt { 3 } = 0 , \sqrt { 3 } x - y + \sqrt { 3 } = 0

C

x+3y3=0,x3y3=0x + \sqrt { 3 } y - \sqrt { 3 } = 0 , x - \sqrt { 3 } y - \sqrt { 3 } = 0

D

None of these

Answer
Explanation

Solution

The equation of lines passing through (1, 0) are given by y=m(x1)y = m ( x - 1 ). Its distance from origin is 32\frac { \sqrt { 3 } } { 2 } .

m1+m2=32\left| \frac { - m } { \sqrt { 1 + m ^ { 2 } } } \right| = \frac { \sqrt { 3 } } { 2 }m=±3m = \pm \sqrt { 3 } . Hence the lines are

3x+y3=0\sqrt { 3 } x + y - \sqrt { 3 } = 0 and 3xy3=0\sqrt { 3 } x - y - \sqrt { 3 } = 0.