Question
Question: The equations of the asymptotes of the hyperbola \(2x^{2} + 5xy + 2y^{2} - 11x - 7y - 4 = 0\)are...
The equations of the asymptotes of the hyperbola
2x2+5xy+2y2−11x−7y−4=0are
A
2x2+5xy+2y2−11x−7y−5=0
B
2x2+4xy+2y2−7x−11y+5=0
C
2x2+5xy+2y2−11x−7y+5=0
D
None of these
Answer
2x2+5xy+2y2−11x−7y−5=0
Explanation
Solution
The pair of asymptotes curve differ by a constant.
∴Pair of asymptotes
2x2+5xy+2y2−11x−7y+λ=0……..……(1)
Hence (1) represents a pair of straight lines.
∴Δ=0
then 2 x 2 x λ + 2 x -27 x - 211x 25 - 2 x (−27)2 - 2 x (−211)2 - λ(25)2=0
∴λ=5 From (1)
∴ pair of asymptotes is
2x2+5xy+2y2−11x−7y+5=0