Solveeit Logo

Question

Question: The equations of the asymptotes of the hyperbola \(2x^{2} + 5xy + 2y^{2} - 11x - 7y - 4 = 0\)are...

The equations of the asymptotes of the hyperbola

2x2+5xy+2y211x7y4=02x^{2} + 5xy + 2y^{2} - 11x - 7y - 4 = 0are

A

2x2+5xy+2y211x7y5=02x^{2} + 5xy + 2y^{2} - 11x - 7y - 5 = 0

B

2x2+4xy+2y27x11y+5=02x^{2} + 4xy + 2y^{2} - 7x - 11y + 5 = 0

C

2x2+5xy+2y211x7y+5=02x^{2} + 5xy + 2y^{2} - 11x - 7y + 5 = 0

D

None of these

Answer

2x2+5xy+2y211x7y5=02x^{2} + 5xy + 2y^{2} - 11x - 7y - 5 = 0

Explanation

Solution

The pair of asymptotes curve differ by a constant.

\thereforePair of asymptotes

2x2+5xy+2y211x7y+λ=02x^{2} + 5xy + 2y^{2} - 11x - 7y + \lambda = 0……..……(1)

Hence (1) represents a pair of straight lines.

Δ=0\therefore\Delta = 0

then 2 x 2 x λ + 2 x -72\frac{7}{2} x - 112\frac{11}{2}x 52\frac{5}{2} - 2 x (72)2\left( - \frac{7}{2} \right)^{2} - 2 x (112)2\left( - \frac{11}{2} \right)^{2} - λ(52)2=0\left( \frac{5}{2} \right)^{2} = 0

λ=5\therefore\lambda = 5 From (1)

\therefore pair of asymptotes is

2x2+5xy+2y211x7y+5=02x^{2} + 5xy + 2y^{2} - 11x - 7y + 5 = 0