Solveeit Logo

Question

Question: The equations of motion of a projectile are given by x = 36t m and 2y = 96t – 9.8t<sup>2</sup> m. Th...

The equations of motion of a projectile are given by x = 36t m and 2y = 96t – 9.8t2 m. The angle of projection is

A

sin1(45)\sin^{- 1}\left( \frac{4}{5} \right)

B

sin1(35)\sin^{- 1}\left( \frac{3}{5} \right)

C

sin1(43)\sin^{- 1}\left( \frac{4}{3} \right)

D

sin1(34)\sin^{- 1}\left( \frac{3}{4} \right)

Answer

sin1(45)\sin^{- 1}\left( \frac{4}{5} \right)

Explanation

Solution

Given: x = 36 t

and 2y=96t9.8t22y = 96t - 9.8t^{2}

or y=48t4.9t2y = 48t - 4.9t^{2}

Let the initial velocity of projectile be u and angle of projections is θ\theta. Then,

Initial horizontal component of velocity.

ux=ucosθ=(dxdt)t=0=36u_{x} = u\cos\theta = \left( \frac{dx}{dt} \right)_{t = 0} = 36 …… (i)

Or u cosθ=36\cos\theta = 36

Initial vertical component of velocity

uy=usinθ=(dydt)t=0=48u_{y} = u\sin\theta = \left( \frac{dy}{dt} \right)_{t = 0} = 48

Or usinθ=48u\sin\theta = 48 ….. (ii)

tanθ=4836=43\tan\theta = \frac{48}{36} = \frac{4}{3}

sinθ=43orθ=sin1(45)\therefore\sin\theta = \frac{4}{3}or\theta = \sin^{- 1}\left( \frac{4}{5} \right)