Solveeit Logo

Question

Physics Question on projectile motion

The equations of motion of a projectile are given by x=36tmx = 36t\, m and 2y=96t9.8t2m2y = 96t - 9.8t^2\,m. The angle of projection is

A

sin1(45)sin^{-1}\left(\frac{4}{5}\right)

B

sin1(35)sin^{-1}\left(\frac{3}{5}\right)

C

sin1(43)sin^{-1}\left(\frac{4}{3}\right)

D

sin1(34)sin^{-1}\left(\frac{3}{4}\right)

Answer

sin1(45)sin^{-1}\left(\frac{4}{5}\right)

Explanation

Solution

Given : x=36tx = 36t, 2y=96t9.8t22y = 96t - 9.8t^2 or y=48t4.9t2y = 48t-4.9t^2 Let the initial velocity of projectile be uu and angle of projection is θ\theta. Then, Initial horizontal component of velocity, ux=ucosθ=(dxdt)t=0=36u_{x}=u\,cos\,\theta=\left(\frac{dx}{dt}\right)_{t = 0}=36 or ucosθ=36...(i)ucos\theta = 36\,...\left(i\right) Initial vertical component of velocity, uy=usinθ=(dydt)t=0=48u_{y}=u\,sin\,\theta=\left(\frac{dy}{dt}\right)_{t=0}=48 or usinθ=48...(ii)usin\theta = 48\,... \left(ii\right) Dividing (ii)\left(ii\right) by (i)\left(i\right), we get tanθ=4836=43tan\,\theta=\frac{48}{36}=\frac{4}{3}\, sinθ=45\therefore sin\,\theta=\frac{4}{5} or θ=sin1(45)\theta=sin^{-1}\left(\frac{4}{5}\right)