Solveeit Logo

Question

Question: The equations of any tangents to the circle \(x ^ { 2 } + y ^ { 2 } - 2 x + 4 y - 4 = 0\) is...

The equations of any tangents to the circle

x2+y22x+4y4=0x ^ { 2 } + y ^ { 2 } - 2 x + 4 y - 4 = 0 is

A

y=m(x1)+31+m22y = m ( x - 1 ) + 3 \sqrt { 1 + m ^ { 2 } } - 2

B

y=mx+31+m2y = m x + 3 \sqrt { 1 + m ^ { 2 } }

C

y=mx+31+m22y = m x + 3 \sqrt { 1 + m ^ { 2 } } - 2

D

None of these

Answer

y=m(x1)+31+m22y = m ( x - 1 ) + 3 \sqrt { 1 + m ^ { 2 } } - 2

Explanation

Solution

Equation of circle is (x1)2+(y+2)2=32( x - 1 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 3 ^ { 2 } .

As any tangent to x2+y2=32x ^ { 2 } + y ^ { 2 } = 3 ^ { 2 } is given by

y=mx+31+m2y = m x + 3 \sqrt { 1 + m ^ { 2 } }

Any tangent to the given circle will be

y+2=m(x1)+31+m2y + 2 = m ( x - 1 ) + 3 \sqrt { 1 + m ^ { 2 } } y=m(x1)+31+m22\Rightarrow y = m ( x - 1 ) + 3 \sqrt { 1 + m ^ { 2 } } - 2