Solveeit Logo

Question

Question: The equation \[{y^2} - {x^2} + 2x - 1 = 0\] represents ? A. A pair of straight lines B. A Circl...

The equation y2x2+2x1=0{y^2} - {x^2} + 2x - 1 = 0 represents ?
A. A pair of straight lines
B. A Circle
C. A Parabola
D. Ellipse

Explanation

Solution

For the questions related to the conic section always compare the given equation with the general equation of conic section which is ax2  + 2hxy + by2  + 2gx + 2fy + c = 0a{x^2}\; + {\text{ }}2hxy{\text{ }} + {\text{ }}b{y^2}\; + {\text{ }}2gx{\text{ }} + {\text{ }}2fy{\text{ }} + {\text{ }}c{\text{ }} = {\text{ }}0 if the specified conic section ( circle , parabola ) etc. is not given .

Complete step by step answer:
Given : y2x2+2x1=0{y^2} - {x^2} + 2x - 1 = 0
On comparing the given equation with the general equation ax2  + 2hxy + by2  + 2gx + 2fy + c = 0a{x^2}\; + {\text{ }}2hxy{\text{ }} + {\text{ }}b{y^2}\; + {\text{ }}2gx{\text{ }} + {\text{ }}2fy{\text{ }} + {\text{ }}c{\text{ }} = {\text{ }}0 , we get
a=1a = - 1 , b=1b = 1 , g=1g = 1 , h=0h = 0 , f=0f = 0 , c=1c = - 1 . Now , for different conic sections we have different conditions . For that we have to find the determinant ( Δ\Delta ) of the general equation then we will have conditions .
Determinant of the general equation will be \Delta = \left( {\begin{array}{*{20}{c}} {{a_{}}}&h;&g; \\\ h&b;&f; \\\ g&f;&c; \end{array}} \right) , if Δ\Delta the will become 00 . Then , it is a pair of straight lines . Otherwise , if Δ\Delta is not 00 ( Δ0\Delta \ne 0 ) . Then , we have
If h2=ab{h^2} = ab , then it is a parabola .
If h2>ab{h^2} > ab , then it is a hyperbola .
If h2=0,a=b{h^2} = 0,a = b , then it is a circle .
If h2>ab{h^2} > ab , then it is an ellipse .
Putting the values of the general equations co – efficients , we get \Delta = \left( {\begin{array}{*{20}{c}} { - {1_{}}}&0&1 \\\ 0&1&0 \\\ 1&0&{ - 1} \end{array}} \right) , on solving the determinant , we get
 = 1(10)0+1(01){\text{ = }} - 1( - 1 - 0) - 0 + 1(0 - 1)
 = 1(1)0+1(1){\text{ = }} - 1( - 1) - 0 + 1( - 1) , on solving we get
= 11= {\text{ }}1 - 1
= 0= {\text{ }}0 .
Therefore , we get the Δ\Delta as Δ=0\Delta = 0. So , the given equation represents a pair of straight lines .

So, the correct answer is “Option A”.

Note: The general equation for the conic sections for the is a second degree homogeneous equation where aa , hh , bb does not vary simultaneously . The determinant ( Δ\Delta ) from the general equation is obtained using the equation abc + 2fgh  af2   af2   bg2   ch2  = 0abc{\text{ }} + {\text{ }}2fgh{\text{ }}-{\text{ }}a{f^2}\;-{\text{ }}a{f^2}\;-{\text{ }}b{g^2}\;-{\text{ }}c{h^2}\; = {\text{ }}0.