Question
Question: The equation x<sup>3</sup>− 3x + [a] = 0, where [.] denotes the greatest integer function, will have...
The equation x3− 3x + [a] = 0, where [.] denotes the greatest integer function, will have real and distinct roots if
A
a ∈ (-∞, 2)
B
a ∈ (0, 2)
C
a ∈ (∞, - 2) ∪ (0, ∞)
D
a ∈[-1, 2)
Answer
a ∈[-1, 2)
Explanation
Solution
Let f(x) = x3 − 3x + 1 ⇒ f(x) = 3(x – 1)(x + 1).
Clearly x = −1 and x = 1 are the points of local maxima and local minima respectively for y = f(x). Now f(x) = 0 will have real and distinct roots if f(1).f(-1) < 0 ⇒ ([a] + 2) ([a] - 2) < 0
⇒ −2 < [a] < 2
⇒ a ∈ [-1,2)